Publications

12 Results

Search results

Jump to search filters

Extending the frequency limits of “postage-stamp piv” to mhz rates

AIAA Scitech 2020 Forum

Beresh, Steven J.; Spillers, Russell W.; Soehnel, Melissa M.; Spitzer, Seth M.

Two techniques have extended the effective frequency limits of postage-stamp PIV, in which a pulse-burst laser and very small fields of view combine to achieve high repetition rates. An interpolation scheme reduced measurement noise, raising the effective frequency response of previous 400-kHz measurements from about 120 kHz to 200 kHz. The other technique increased the PIV acquisition rate to very nearly MHz rates (990 kHz) by using a faster camera. Charge leaked through the camera shift register at these framing rates but this was shown not to bias the measurements. The increased framing rate provided oversampled data and enabled use of multi-frame correlation algorithms for a lower noise floor, increasing the effective frequency response to 240 kHz where the interrogation window size begins to spatially filter the data. Good agreement between the interpolation technique and the MHz-rate PIV measurements was established. The velocity spectra suggest turbulence power-law scaling in the inertial subrange steeper than the theoretical-5/3 scaling, attributed to an absence of isotropy.

More Details

A free-piston driven shock tube for generating extreme aerodynamic environments: Design and first shots

AIAA Scitech 2019 Forum

Lynch, Kyle P.; Spitzer, Seth M.; Grasser, Thomas W.; Spillers, Russell W.; Farias, Paul A.; Wagner, Justin W.

A new free-piston driven shock tube is being constructed at Sandia National Laboratories for generating extreme aerodynamic environments relevant for the study of reacting particle dispersal. The high-temperature shock tube (HST) is designed to reach post-incident shock temperatures more than 2000 K, starting from a driven section initially at ambient temperature and pressure. A design study is presented on different driver methods, leading to the selection of a free-piston driver. The tuning and performance of this driver is analyzed using the Hornung one-dimensional model and the L1d quasi-one-dimensional flow solver. The final mechanical design is shown and compared to the X2 free-piston facility. Construction was completed in mid-2018, and an initial analysis of facility performance from the first shots is presented.

More Details

Novel ground test applications of high-frequency pressure sensitive paint

AIAA Aviation 2019 Forum

Casper, Katya M.; Spitzer, Seth M.; Glenn, Nathan; Schultz, Ryan S.

Two novel and challenging applications of high-frequency pressure-sensitive paint were attempted for ground testing at Sandia National Labs. Blast tube testing, typically used to assess the response of a system to an incident blast wave, was the first application. The paint was tested to show feasibility for supplementing traditional pressure instrumentation in the harsh outdoor environment. The primary challenge was the background illumination from sunlight and time-varying light contamination from the associated explosion. Optimal results were obtained in pre-dawn hours when sunlight contamination was absent; additional corrections must be made for the intensity of the explosive illumination. A separate application of the paint for acoustic testing was also explored to provide the spatial distribution of loading on systems that do not contain pressure instrumentation. In that case, the challenge was the extremely low level of pressure variations that the paint must resolve (120 dB). Initial testing indicated the paint technique merits further development for a larger scale reverberant chamber test with higher loading levels near 140 dB.

More Details

Hypersonic Fluid-Structure Interactions on a Slender Cone

AIAA Journal

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Hunter, Patrick H.; Spitzer, Seth M.

Fluid-structure interactions were studies on a 7° half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Here, under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration.

More Details

Hypersonic fluid-structure interactions on a slender cone

AIAA Aerospace Sciences Meeting, 2018

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Hunter, Patrick H.; Spitzer, Seth M.

Fluid-structure interactions were studied on a 7◦ half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration. When the spot generation frequency matched a structural natural frequency of the panel, resonance would occur and responses over 200 times greater than under a laminar boundary layer were obtained. At Mach 5 and 8 under noisy flow conditions, natural transition driven by the wind-tunnel acoustic noise dominated the panel response. An elevated vibrational response was observed during transition at frequencies corresponding to the distribution of turbulent spots in the transitional flow. Once turbulent flow developed, the structural response dropped because the intermittent forcing from the spots no longer drove panel vibration.

More Details

Effects of cavity width on resonance dynamics using planform time-resolved PIV and PSP

AIAA Aerospace Sciences Meeting, 2018

Wagner, Justin W.; Casper, Katya M.; Beresh, Steven J.; Lynch, Kyle P.; Spillers, Russell W.; Spitzer, Seth M.; Demauro, Edward P.

The spanwise variation of resonance dynamics in the Mach 0.94 flow over a finite-span cavity of variable length-to-width ratio was explored using time-resolved particle image velocimetry (TR-PIV) in a planform plane above the cavity and time-resolved pressure sensitive paint (TR-PSP) on the floor and adjacent exterior surface. The TR-PIV showed a significant variation in resonant fluctuations to occur across the span of the cavity, which appears to arise from spillage vortices stemming from finite width effects. Thus, the spanwise variation was a strong function of the cavity aspect ratio and was only weakly dependent on the cavity mode number. Modal streamwise velocity fluctuations in the spillage vortices showed large peaks at modes one through three, indicating that resonance dynamics, and not just broadband turbulence effects, are prevalent near the sidewalls. Large peaks in modal pressures were also present on the walls just outside of the cavity. Interestingly, prominent peaks at the mode frequencies were observed in the spanwise velocity spectra as well. These peaks were strongest near the cavity sidewalls suggesting a coupling between the resonance mechanism and the spillage vortices.

More Details

“Postage-stamp PIV:” Small velocity fields at 400 kHz for turbulence spectra measurements

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.

Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4,000 frames, but for an array of only 128 × 120 pixels, giving the moniker of “postage-stamp PIV.” The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 100 kHz at which point a noise floor emerges dependent upon the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. One is the well-known inertial subrange with a slope of -5/3 at high frequencies. The other displays a -1 power-law dependence for a decade of mid-range frequencies corresponding to the energetic eddies measured by PIV, which appears to have been previously unrecognized for high-speed free shear flows.

More Details
12 Results
12 Results