Publications

Results 6001–6200 of 96,771

Search results

Jump to search filters

Noncolinear optical parametric oscillator for broadband nanosecond pulse-burst CARS diagnostics in gases

Optics Letters

Jans, E.R.; Armstrong, Darrell J.; Smith, Arlee V.; Kearney, S.P.

Demonstration of broadband nanosecond coherent anti-Stokes Raman scattering (CARS) using a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at a pulse repetition rate of 40 kHz. The NOPO is pumped with the 355-nm output of a burst-mode Nd:YAG laser at 50 mJ/pulse for 45 pulses and produces an output centered near 607 nm, with a bandwidth of 370 cm−1 at energies of 5 mJ/pulse. A planar BOXCARS phase matching scheme uses the broadband NOPO output as the Stokes beam and the narrowband 532-nm burst-mode output for the two CARS pump beams for single-laser-shot nitrogen thermometry in near adiabatic H2/air flames at temperatures up to 2200 K.

More Details

Maritime Fuel Cell Generator Project [FY2018]

Klebanoff, Leonard E.

Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighboring islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings. Deployment in Hawaii showed the unit needed greater reliability in the start-up sequence, as well as an improved interface to the end-user, thereby presenting opportunities for repairing/upgrading the unit for deployment in another locale. In FY2018, the unit was repaired and upgraded based on the Hawaii experience, and another deployment site was identified for another 6-month deployment of the 100 kW MarFC.

More Details

Tritium Fires: Simulation and Safety Assessment

Brown, Alexander B.; Shurtz, Randy S.; Takahashi, Lynelle K.; Coker, Eric N.; Hewson, John C.; Hobbs, Michael L.

This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.

More Details

A method for generating moving, orthogonal, area preserving polygonal meshes

Journal of Computational Physics

Perot, J.B.; Chartrand, Chris C.

A new method for generating locally orthogonal polygonal meshes from a set of generator points is presented in which polygon areas are a constraint. The area constraint property is particularly useful for particle methods where moving polygons track a discrete portion of material. Because Voronoi polygon meshes have some very attractive mathematical and numerical properties for numerical computation, a generalization of Voronoi polygon meshes was formulated that enforces a polygon area constraint. Area constrained moving polygonal meshes allow one to develop hybrid particle-mesh numerical methods that display some of the most attractive features of each approach. It is shown that this mesh construction method can continuously reconnect a moving, unstructured polygonal mesh in a pseudo-Lagrangian fashion without change in cell area/volume, and the method's ability to simulate various physical scenarios is shown. The advantages are identified for incompressible fluid flow calculations, with demonstration cases that include material discontinuities of all three phases of matter and large density jumps.

More Details

Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils

Sensors

Iivanainen, Joonas; Borna, Amir B.; Zetter, Rasmus; Carter, T.R.; Stephen, Julia M.; Mckay, Jim; Parkkonen, Lauri; Taulu, Samu; Schwindt, Peter S.

In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well‐calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first‐order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo‐inverses of two matrices. The currents that should be applied to the coils for approximating these low‐order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2°, and 0.8%, respectively. Lastly, we calibrated a 48‐channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.

More Details

Molecular Dynamics Simulation and Cryo-Electron Microscopy Investigation of AOT Surfactant Structure at the Hydrated Mica Surface

Minerals

Long, Daniel M.; Greathouse, Jeffery A.; Xu, Guangping X.; Jungjohann, Katherine L.

Structural properties of the anionic surfactant dioctyl sodium sulfosuccinate (AOT or Aerosol-OT) adsorbed on the mica surface were investigated by molecular dynamics simulation, including the effect of surface loading in the presence of monovalent and divalent cations. The simulations confirmed recent neutron reflectivity experiments that revealed the binding of anionic surfactant to the negatively charged surface via adsorbed cations. At low loading, cylindrical micelles formed on the surface, with sulfate head groups bound to the surface by water molecules or adsorbed cations. Cation bridging was observed in the presence of weakly hydrating monovalent cations, while sulfate groups interacted with strongly hydrating divalent cations through water bridges. The adsorbed micelle structure was confirmed experimentally with cryogenic electronic microscopy, which revealed micelles approximately 2 nm in diameter at the basal surface. At higher AOT loading, the simulations reveal adsorbed bilayers with similar surface binding mechanisms. Adsorbed micelles were slightly thicker (2.2–3.0 nm) than the corresponding bilayers (2.0–2.4 nm). Upon heating the low loading systems from 300 K to 350 K, the adsorbed micelles transformed to a more planar configuration resembling bilayers. The driving force for this transition is an increase in the number of sulfate head groups interacting directly with adsorbed cations.

More Details

Demonstration of >6.0-kV Breakdown Voltage in Large Area Vertical GaN p-n Diodes With Step-Etched Junction Termination Extensions

IEEE Transactions on Electron Devices

Yates, Luke Y.; Gunning, Brendan P.; Crawford, Mary H.; Steinfeldt, Jeffrey A.; Smith, Michael; Abate, Vincent M.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Binder, Andrew B.; Allerman, A.A.; Kaplar, Robert K.

Vertical gallium nitride (GaN) p-n diodes have garnered significant interest for use in power electronics where high-voltage blocking and high-power efficiency are of concern. In this article, we detail the growth and fabrication methods used to develop a large area (1 mm2) vertical GaN p-n diode capable of a 6.0-kV breakdown. We also demonstrate a large area diode with a forward pulsed current of 3.5 A, an 8.3-mΩ·cm2 differential specific ON-resistance, and a 5.3-kV reverse breakdown. In addition, we report on a smaller area diode (0.063 mm2) that is capable of 6.4-kV breakdown with a differential specific ON-resistance of 10.2 m·Ω·cm2, when accounting for current spreading through the drift region at a 45° angle. Finally, the demonstration of avalanche breakdown is shown for a 0.063-mm2 diode with a room temperature breakdown of 5.6 kV. These results were achieved via epitaxial growth of a 50-μm drift region with a very low carrier concentration of < 1×1015 cm-3 and a carefully designed four-zone junction termination extension.

More Details

Self-Induced Curvature in an Internally Loaded Peridynamic Fiber

Silling, Stewart A.

A straight fiber with nonlocal forces that are independent of bond strain is considered. These internal loads can either stabilize or destabilize the straight configuration. Transverse waves with long wavelength have unstable dispersion properties for certain combinations of nonlocal kernels and internal loads. When these unstable waves occur, deformation of the straight fiber into a circular arc can lower its potential energy in equilibrium. The equilibrium value of the radius of curvature is computed explicitly.

More Details

Adversarial Sampling-Based Motion Planning

IEEE Robotics and Automation Letters

Nichols, Hayden; Jimenez, Mark; Goddard, Zachary; Sparapany, Michael J.; Boots, Byron; Mazumdar, Anirban

There are many scenarios in which a mobile agent may not want its path to be predictable. Examples include preserving privacy or confusing an adversary. However, this desire for deception can conflict with the need for a low path cost. Optimal plans such as those produced by RRT∗ may have low path cost, but their optimality makes them predictable. Similarly, a deceptive path that features numerous zig-zags may take too long to reach the goal. We address this trade-off by drawing inspiration from adversarial machine learning. We propose a new planning algorithm, which we title Adversarial RRT*. Adversarial RRT∗ attempts to deceive machine learning classifiers by incorporating a predicted measure of deception into the planner cost function. Adversarial RRT∗ considers both path cost and a measure of predicted deceptiveness in order to produce a trajectory with low path cost that still has deceptive properties. We demonstrate the performance of Adversarial RRT*, with two measures of deception, using a simulated Dubins vehicle. We show how Adversarial RRT∗ can decrease cumulative RNN accuracy across paths to 10%, compared to 46% cumulative accuracy on near-optimal RRT∗ paths, while keeping path length within 16% of optimal. We also present an example demonstration where the Adversarial RRT∗ planner attempts to safely deliver a high value package while an adversary observes the path and tries to intercept the package.

More Details

Tomographic imaging of atmospheric pressure plasma on complex surfaces

Bentz, Brian Z.

Many plasma types and behaviors such as streamer, arcs, cathode spots, anode spots, ionization waves, and magnetic field interactions create non-symmetric, fully 3D plasma structures. The plasma distribution in 3D space is heavily influenced by complex surfaces and the coupling interactions between plasma properties and the interfacing material properties. For example, ionization waves propagate in directions where ionization rates are highest, leading to complex configurations that are not fully understood or well characterized. Recent advances in laser diagnostics and models have been able to investigate well-controlled idealized plasmas in 2D fashion, but the complex structure in actual plasmas requires a technique than can provide a more complete 3D picture. However, 3D plasma diagnostics do not currently exist. To address this limitation, this activity will leverage available equipment to build a new tomographic optical imaging capability and advance the state-of-the-art in plasma diagnostics to investigate 3D phenomena on complex surfaces.

More Details

Health Management Clinic Report FY18

Grassham, Johanna M.

The Health Management Clinic (HMC) is a worksite specialty clinic designed to provide an exceptional level of health care for Sandia employees with diabetes, cholesterol and blood pressure disorders, and for those employees that need help with smoking cessation, depression, anxiety, sleep disorders, or weight management. With a unified commitment to the best care practices available, the HMC is Sandia’s interface to workplace healthcare and health plan services. The HMC provides Sandia employees access to onsite screenings, health care exams, preventative health education, disease management education, care management, periodic laboratory testing, immunizations, podiatry services, and behavioral, fitness, and nutrition counseling/education. Our multidisciplinary team of health professionals consists of physicians, nurses, medical assistants, certified diabetes educators, dietitians, health educators, and exercise specialists. Services offered by the Health Management clinic have been designed to reduce further complications from disease states and promote healthy behavior changes for Sandia employees.

More Details

Inverse Methods - Users Manual 5.6

Walsh, Timothy W.; Akcelik, Volkan A.; Aquino, Wilkins A.; McCormick, Cameron M.; Sanders, Clay M.; Treweek, Benjamin T.; Kurzawski, Andrew K.; Smith, Chandler B.

The inverse methods team provides a set of tools for solving inverse problems in structural dynamics and thermal physics, and also sensor placement optimization via Optimal Experimental Design (OED). These methods are used for designing experiments, model calibration, and verfication/validation analysis of weapons systems. This document provides a user's guide to the input for the three apps that are supported for these methods. Details of input specifications, output options, and optimization parameters are included.

More Details

Calibrating the SPECTACULAR constitutive model using legacy Sandia data for two filled epoxy systems: 828/CTBN/DEA/GMB and 828/DEA/GMB

Cundiff, Kenneth N.

The SPECTACULAR model is a development extension of the Simplified Potential Energy Clock (SPEC) model. Both models are nonlinear viscoelastic constitutive models used to predict a wide range of time-dependent behaviors in epoxies and other glass-forming materials. This report documents the procedures used to generate SPECTACULAR calibrations for two particulate-filled epoxy systems, 828/CTBN/DEA/GMB and 828/DEA/GMB. No previous SPECTACULAR or SPEC calibration exists for 828/CTBN/DEA/GMB, while a legacy SPEC calibration exists for 828/DEA/GMB. To generate the SPECTACULAR calibrations, a step-by-step procedure was executed to determine parameters in groups with minimal coupling between parameter groups. This procedure has often been deployed to calibrate SPEC, therefore the resulting SPECTACULAR calibration is backwards compatible with SPEC (i.e. none of the extensions specific to SPECTACULAR are used). The calibration procedure used legacy Sandia experimental data stored on the Polymer Properties Database website. The experiments used for calibration included shear master curves, isofrequency temperature sweeps under oscillatory shear, the bulk modulus at room temperature, the thermal strain during a temperature sweep, and compression through yield at multiple temperatures below the glass transition temperature. Overall, the calibrated models fit the experimental data remarkably well. However, the glassy shear modulus varies depending on the experiment used to calibrate it. For instance, the shear master curve, isofrequency temperature sweep under oscillatory shear, and the Young's modulus in glassy compression yield values for the glassy shear modulus at the reference temperature that vary by as much as 15 %. Also, for 828/CTBN/DEA/GMB, the temperature dependence of the glassy shear modulus when fit to the Young's modulus at different temperatures is approximately four times larger than when it is determined from the isofrequency temperature sweep under oscillatory shear. For 828/DEA/GMB, the temperature dependence of the shear modulus determined from the isofrequency temperature sweep under oscillatory shear accurately predicts the Young's modulus at different temperatures. When choosing values for the shear modulus, fitting the glassy compression data was prioritized. The new and legacy calibrations for 828/DEA/GMB are similar and appear to have been calibrated from the same data. However, the new calibration improves the fit to the thermal strain data. In addition to the standard calibrations, development calibrations were produced that take advantage of development features of SPECTACULAR , including an updated equilibrium Helmholtz free energy that eliminates undesirable behavior found in previous work. In addition to the previously mentioned experimental data, the development calibrations require data for the heat capacity during a stress-free temperature sweep to calibrate thermal terms.

More Details

Response of a Pressurized Water Reactor Dashpot Region to Commercial Drying Cycles

Pulido, Ramon P.; TACONI, ANNA M.; Laros, James H.; Fasano, Raymond E.; Laros, James H.; Baigas, Beau T.; Durbin, S.G.

The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.

More Details

Evaluating Spatial Accelerator Architectures with Tiled Matrix-Matrix Multiplication

IEEE Transactions on Parallel and Distributed Systems

Moon, Gordon E.; Kwon, Hyoukjun; Jeong, Geonhwa; Chatarasi, Prasanth; Rajamanickam, Sivasankaran R.; Krishna, Tushar

There is a growing interest in custom spatial accelerators for machine learning applications. These accelerators employ a spatial array of processing elements (PEs) interacting via custom buffer hierarchies and networks-on-chip. The efficiency of these accelerators comes from employing optimized dataflow (i.e., spatial/temporal partitioning of data across the PEs and fine-grained scheduling) strategies to optimize data reuse. The focus of this work is to evaluate these accelerator architectures using a tiled general matrix-matrix multiplication (GEMM) kernel. To do so, we develop a framework that finds optimized mappings (dataflow and tile sizes) for a tiled GEMM for a given spatial accelerator and workload combination, leveraging an analytical cost model for runtime and energy. Our evaluations over five spatial accelerators demonstrate that the tiled GEMM mappings systematically generated by our framework achieve high performance on various GEMM workloads and accelerators.

More Details

aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture

Structural and Multidisciplinary Optimization

Laros, James H.; Wildey, Timothy M.; Furlan, John M.; Krishnan, Pagalthivarthi; Visintainer, Robert J.; Mccann, Scott

High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.

More Details

In situ detection of RF breakdown on microfabricated surface ion traps

Journal of Applied Physics

Wilson, Joshua M.; Tilles, Julia N.; Haltli, Raymond A.; Ou, Eric; Blain, Matthew G.; Clark, Susan M.; Revelle, Melissa R.

We report microfabricated surface ion traps are a principal component of many ion-based quantum information science platforms. The operational parameters of these devices are pushed to the edge of their physical capabilities as the experiments strive for increasing performance. When the applied radio-frequency (RF) voltage is increased excessively, the devices can experience damaging electric discharge events known as RF breakdown. We introduce two novel techniques for in situ detection of RF breakdown, which we implemented while characterizing the breakdown threshold of surface ion traps produced at Sandia National Laboratories. In these traps, breakdown did not always occur immediately after increasing the RF voltage, but often minutes or even hours later. This result is surprising in the context of the suggested mechanisms for RF breakdown in vacuum. Additionally, the extent of visible damage caused by breakdown events increased with the applied voltage. To minimize the probability for damage when RF power is first applied to a device, our results strongly suggest that the voltage should be ramped up over the course of several hours and monitored for breakdown.

More Details

HYSPLIT/MACCS Atmospheric Dispersion Model Technical Documentation and Benchmark Analysis

Clayton, Daniel J.; Bixler, Nathan E.; Compton, Keith L.

The nuclear accident consequence analysis code MACCS has traditionally modeled dispersion during downwind transport using a Gaussian plume segment model. MACCS is designed to estimate consequence measures such as air concentrations and ground depositions, radiological doses, and health and economic impacts on a statistical basis over the course of a year to produce annualaveraged output measures. The objective of this work is to supplement the Gaussian atmospheric transport and diffusion (ATD) model currently in MACCS with a new option using the HYSPLIT model. HYSPLIT/MACCS coupling has been implemented, with HYSPLIT as an alternative ATD option. The subsequent calculations in MACCS use the HYSPLIT-generated air concentration, and ground deposition values to calculate the same range of output quantities (dose, health effects, risks, etc.) that can be generated when using the MACCS Gaussian ATD model. Based on the results from the verification test cases, the implementation of the HYSPLIT/MACCS coupling is confirmed. This report contains technical details of the HYSPLIT/MACCS coupling and presents a benchmark analysis using the HYSPLIT/MACCS coupling system. The benchmark analysis, which involves running specific scenarios and sensitivity studies designed to examine how the results generated by the traditional MACCS Gaussian plume segment model compare to the new, higher fidelity HYSPLIT/MACCS modeling option, demonstrates the modeling results that can be obtained by using this new option. The comparisons provided herein can also help decision-makers evaluate the potential benefit of using results based on higher fidelity modeling with the additional computational burden needed to perform the calculations. Three sensitivity studies to investigate the potential impact of alternative modeling options, regarding 1) input meteorological data set, 2) method to estimate stability class, and 3) plume dispersion model for larger distances, on consequence results were also performed. The results of these analyses are provided and discussed in this report.

More Details

Preliminary Assessment of Potential for Wind Energy Technology on the Turtle Mountain Band of Chippewa Reservation

Lavallie, Sarah S.

Wind energy can provide renewable, sustainable electricity to rural Native homes and power schools and businesses. It can even provide tribes with a source of income and economic development. The purpose of this research is to determine the potential for deploying community and utility-scale wind renewable technologies on Turtle Mountain Band of Chippewa tribal lands. Ideal areas for wind technology development were investigated, based on wind resources, terrain, land usage, and other factors. This was done using tools like the National Renewable Energy Laboratory Wind Prospector, in addition to consulting tribal members and experts in the field. The result was a preliminary assessment of wind energy potential on Turtle Mountain lands, which can be used to justify further investigation and investment into determining the feasibility of future wind technology projects.

More Details

Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling

Advanced Energy Materials

Hawkins, Brendan E.; Turney, Damon E.; Messinger, Robert J.; Kiss, Andrew M.; Yadav, Gautam G.; Banerjee, Sanjoy; Lambert, Timothy N.

Zinc oxide is of great interest for advanced energy devices because of its low cost, wide direct bandgap, non-toxicity, and facile electrochemistry. In zinc alkaline batteries, ZnO plays a critical role in electrode passivation, a process that hinders commercialization and remains poorly understood. Here, novel observations of an electroactive type of ZnO formed in Zn-metal alkaline electrodes are disclosed. The electrical conductivity of battery-formed ZnO is measured and found to vary by factors of up to 104, which provides a first-principles-based understanding of Zn passivation in industrial alkaline batteries. Simultaneous with this conductivity change, protons are inserted into the crystal structure and electrons are inserted into the conduction band in quantities up to ≈1020 cm−3 and ≈1 mAh gZnO−1. Electron insertion causes blue electrochromic coloration with efficiencies and rates competitive with leading electrochromic materials. The electroactivity of ZnO is evidently enabled by rapid crystal growth, which forms defects that complex with inserted cations, charge-balanced by the increase of conduction band electrons. This property distinguishes electroactive ZnO from inactive classical ZnO. Knowledge of this phenomenon is applied to improve cycling performance of industrial-design electrodes at 50% zinc utilization and the authors propose other uses for ZnO such as electrochromic devices.

More Details

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel R.; Jones, Elizabeth M.; Munz, Elise D.; Reu, Phillip L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details
Results 6001–6200 of 96,771
Results 6001–6200 of 96,771