Nanostructured thin films for Meissner-Effect Transition-Edge-Sensor Devices
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE International Ultrasonics Symposium, IUS
Ultrasonic waves can be used to transfer power and data to electronic devices in sealed metallic enclosures. Two piezoelectric transducers are used to transmit and receive elastic waves that propagate through the metal. For an efficient power transfer, both transducers are typically bonded to the metal or coupled with a gel which limits the device portability. We present an ultrasonic power transfer system with a detachable transmitter that uses a dry elastic layer and a magnetic joint for efficient coupling. We show that the system can deliver more than 2 W of power to an electric load with 50% efficiency.
IEEE International Ultrasonics Symposium, IUS
For systems that require complete metallic enclosures, it is impossible to power and communicate with interior electronics using conventional electromagnetic techniques. Instead, pairs of ultrasonic transducers can be used to send and receive elastic waves through the enclosure, forming an equivalent electrical transmission line that bypasses the Faraday cage effect. These mechanical communication systems introduce the possibility for electromechanical crosstalk between channels on the same barrier, in which receivers output erroneous electrical signals due to ultrasonic guided waves generated by transmitters in adjacent communication channels. To minimize this crosstalk, this work investigates the use of a phononic crystal/metamaterial machined into the barrier via periodic grooving. Barriers with simultaneous ultrasonic power and data transfer are fabricated and tested to measure the effect of grooving on crosstalk between channels.
IEEE International Ultrasonics Symposium, IUS
Ultrasonic waves can be used to transfer power and data to electronic devices in sealed metallic enclosures. Two piezoelectric transducers are used to transmit and receive elastic waves that propagate through the metal. For an efficient power transfer, both transducers are typically bonded to the metal or coupled with a gel which limits the device portability. We present an ultrasonic power transfer system with a detachable transmitter that uses a dry elastic layer and a magnetic joint for efficient coupling. We show that the system can deliver more than 2 W of power to an electric load with 50% efficiency.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.