Publications

6 Results

Search results

Jump to search filters

Bimolecular Reaction of Methyl-Ethyl-Substituted Criegee Intermediate with SO2

Journal of Physical Chemistry A

Zou, Meijun; Liu, Tianlin; Vansco, Michael F.; Sojdak, Christopher A.; Markus, Charles R.; Almeida, Raybel A.; Au, Kendrew; Sheps, Leonid S.; Osborn, David L.; Winiberg, Frank A.F.; Percival, Carl J.; Taatjes, Craig A.; Klippenstein, Stephen J.; Lester, Marsha I.; Caravan, Rebecca L.

Methyl-ethyl-substituted Criegee intermediate (MECI) is a four-carbon carbonyl oxide that is formed in the ozonolysis of some asymmetric alkenes. MECI is structurally similar to the isoprene-derived methyl vinyl ketone oxide (MVK-oxide) but lacks resonance stabilization, making it a promising candidate to help us unravel the effects of size, structure, and resonance stabilization that influence the reactivity of atmospherically important, highly functionalized Criegee intermediates. We present experimental and theoretical results from the first bimolecular study of MECI in its reaction with SO2, a reaction that shows significant sensitivity to the Criegee intermediate structure. Using multiplexed photoionization mass spectrometry, we obtain a rate coefficient of (1.3 ± 0.3) × 10-10 cm3 s-1 (95% confidence limits, 298 K, 10 Torr) and demonstrate the formation of SO3 under our experimental conditions. Through high-level theory, we explore the effect of Criegee intermediate structure on the minimum energy pathways for their reactions with SO2 and obtain modified Arrhenius fits to our predictions for the reaction of both syn and anti conformers of MECI with SO2 (ksyn = 4.42 × 1011 T-7.80exp(−1401/T) cm3 s-1 and kanti = 1.26 × 1011 T-7.55exp(−1397/T) cm3 s-1). Our experimental and theoretical rate coefficients (which are in reasonable agreement at 298 K) show that the reaction of MECI with SO2 is significantly faster than MVK-oxide + SO2, demonstrating the substantial effect of resonance stabilization on Criegee intermediate reactivity.

More Details

Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol

ACS Catalysis

Zhou, Bo; Huang, Erxiong H.; Almeida, Raybel A.; Gurses, Sadi; Ungar, Alexander; Zetterberg, Johan; Kulkarni, Ambarish; Kronawitter, Coleman X.; Osborn, David L.; Hansen, Nils H.; Frank, Jonathan H.

Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.

More Details
6 Results
6 Results