Publications

Publications / SAND Report

Tritium Fires: Simulation and Safety Assessment

Brown, Alexander B.; Shurtz, Randy S.; Takahashi, Lynelle K.; Coker, Eric N.; Hewson, John C.; Hobbs, Michael L.

This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.