Publications

19 Results

Search results

Jump to search filters

Magneto-optical measurement of magnetic field and electrical current on a short pulse high energy pulsed power accelerator

AIP Advances

Owens, Israel O.; Coffey, Sean K.; Ulmen, Benjamin A.; Harrison, Richard K.; Trujillo, Alex; Rhoades, Elaine L.; Mccutcheon, Brandon; Grabowski, Theodore C.

We describe a direct magneto-optical approach to measuring the magnetic field driven by a narrow pulse width (<10 ns), 20 kA electrical current flow in the transmission line of a high energy pulsed power accelerator. The magnetic field and electrical current are among the most important operating parameters in a pulsed power accelerator and are critical to understanding the properties of the radiation output. However, accurately measuring these fields and electrical currents using conventional pulsed power diagnostics is difficult due to the strength of ionizing radiation and electromagnetic interference. Our approach uses a fiber coupled laser beam with a rare earth element sensing crystal sensor that is highly resistant to electromagnetic interference and does not require external calibration. Here, we focus on device theory, operating parameters, results from an experiment on a high energy pulsed power accelerator, and comparison to a conventional electrical current shunt sensor.

More Details

Verification and benchmarking relativistic electron beam transport through a background gas

Computer Physics Communications

Medina, Brandon M.; Grua, Pierre; Cartwright, Keith C.; Hebert, David; Szalek, Nicolas; Caizergues, Clement; Owens, Israel O.; Rhoades, Elaine L.; Gardelle, Jacques; Moore, Christopher H.

It is necessary to establish confidence in high-consequence codes containing an extensive suite of physics algorithms in the regimes of interest. Verification problems allow code developers to assess numerical accuracy and increase confidence that specific sets of model physics were implemented correctly in the code. The two main verification techniques are code verification and solution verification. In this work, we present verification problems that can be used in other codes to increase confidence in simulations of relativistic beam transport. Specifically, we use the general plasma code EMPIRE to model and compare with the analytical solution to the evolution of the outer radial envelope of a relativistic charged particle beam. We also outline a benchmark test of a relativistic beam propagating through a vacuum and pressurized gas cell, and present the results between EMPIRE and the hybrid code GAZEL. Further, we discuss the subtle errors that were caught with these problems and detail lessons learned.

More Details

Design and Performance of the Solid-State Laser Trigger System for HERMES III

IEEE Transactions on Plasma Science

Grabowski, Theodore C.; Joseph, Nathan R.; Coffey, Sean K.; Hughes, Benjamin M.; Tilley, Gary; Archuleta, G.; Gutierrez, Daniel; Gutierrez, E.; Lott, John A.; Natal, Robert A.; Owens, Israel O.; Santillanes, J.; Shay, Andrew W.; Smart, Brent E.; Tunell, Cameron K.

The HERMES III accelerator is an 18-20 MeV linear induction accelerator constructed at Sandia National Laboratories in the late 1980s and which continues operation to this day. As part of recent modernization efforts, the laser triggering system on the accelerator has been replaced with a newly designed solid-state system. This system consists of ten Nd:YAG lasers, each having a nominal output energy of 40-45 mJ at a wavelength of 266 nm. The beam from each laser is split such that it triggers two of the Rimfire gas switches on the accelerator. Compared to the previous laser triggering system, this arrangement makes it possible to more readily tailor the final output pulse shape, and overall reliability for the accelerator's operation with these new lasers has increased. The design of this new laser triggering system is presented in this paper, along with details pertaining to the energy budgeting, optical beam paths, and electrical triggering of the lasers. Initial operational data from the HERMES III accelerator using this new triggering system is also presented.

More Details

Electro-Optical Measurement of Electric Fields for Pulsed Power Systems

IEEE International Pulsed Power Conference

Owens, Israel O.; Grabowski, Theodore C.; Joseph, N.; Coffey, Sean K.; Ulmen, Benjamin A.; Kirschner, Debra S.; Rainwater, Kirk R.; Struve, Kenneth W.

The electric field strength between the cathode and anode (i.e., the voltage) of a pulsed power machine is one of the most important operating parameters of the device. However, to date, accurate and precise voltage measurements on these high energy pulsed power systems have proved difficult if not virtually impossible to perform. In many cases, the measurements to be performed take place in an environment cluttered with electromagnetic interference (EMI), radio frequency interference (RFI), and electron pollution, and there is the potential for electrical discharge (or arcing), there is limited physical access, or the measurement area is deemed unsuitable due to radiation safety concerns. We report on an electro-optical-based approach to measuring strong, narrow-pulse-width electric fields that requires no interfering metallic probes or components to disturb the field to be measured. Here we focus on device theory, operating parameters and a laboratory experiment.

More Details
19 Results
19 Results