Publications

Results 4801–5000 of 99,299

Search results

Jump to search filters

Magnetically Ablated Reconnection on Z (MARZ) collaboration

Hare, Jack; Datta, Rishabh; Lebedev, Sergey; Chittenden, Jeremy P.; Crilly, Aidan; Halliday, Jack; Chandler, Katherine M.; Jennings, Christopher A.; Ampleford, David J.; Bland, Simon; Aragon, Carlos; Yager-Elorriaga, David A.; Hansen, Stephanie B.; Shipley, Gabriel A.; Webb, Timothy J.; Harding, Eric H.; Robertson, G.K.; Montoya, Michael M.; Kellogg, Jeffrey; Harmon, Roger; Molina, Leo

Abstract not provided.

The effects of dose, dose rate, and irradiation type and their equivalence on radiation-induced segregation in binary alloy systems via phase-field simulations

Journal of Nuclear Materials

Vizoso, Daniel; Deo, Chaitanya; Dingreville, Remi

Radiation-induced segregation is a phenomenon commonly observed in many alloys which consists of the redistribution of elements (solute or interstitial impurities) under irradiation. The onset and development of radiation-induced segregation can only occur when a sufficient flux of defects is sustained and defect sinks are present. Irradiation dose, dose rate, and particle types all affect defect flux. In this work, we employ a phase-field model to examine the effects of dose, dose rate, and type of incident particles on radiation-induced segregation behavior in a model binary alloy. The phase-field model takes into account the formation and evolution of point defects as well as defect clusters, the diffusion and clustering of alloy species, the presence of additional extrinsic defect sinks in the form of dislocations, and two different methods of radiation-damage insertion, which are intended to simulate either light-ion/electron irradiation via Frenkel pairs or heavy-ion irradiation in the form of cascades. Our results show a dose-rate and particle-type dependence on the amount of solute segregation. We show that the material systems exposed to higher dose rates are less subjected to solute segregation at equivalent doses. We also show that such dose-rate-dependence behavior is due to a delay of the incubation dose at which radiation-induced segregation effectively starts. Particle type and the presence of dislocations can accentuate this behavior. Our model predictions correlate with many experimental observations made over the years on radiation-induced segregation providing credence to the simulation results. The methodology presented in this study allows for a first-order prediction of the dose rate at which proxy irradiation experiments could be performed to approximate radiation-induced segregation behaviors seen in targeted irradiation conditions.

More Details

Perspectives on the integration between first-principles and data-driven modeling

Computers and Chemical Engineering

Bradley, William; Kim, Jinhyeun; Kilwein, Zachary A.; Blakely, Logan; Eydenberg, Michael S.; Jalvin, Jordan; Laird, Carl; Boukouvala, Fani

Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is desired to simultaneously take advantage of both engineering principles and data-science. The opportunity for hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of the system; or the integration of a data-driven component approximating an unknown correlation within a mechanistic model. At the same time, different techniques have been proposed and applied in different literatures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and model calibration. In this paper we review the methods, challenges, applications and algorithms of these three research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a comprehensive comparison of the hybridization techniques with respect to their differences and similarities, as well as advantages and limitations and future perspectives. Finally, we apply and illustrate hybrid modeling, physics-informed ML and model calibration via a chemical reactor case study.

More Details

A pseudo-two-dimensional (P2D) model for FeS2 conversion cathode batteries

Journal of Power Sources

Horner, Jeffrey S.; Whang, Grace; Kolesnichenko, Igor V.; Lambert, Timothy N.; Dunn, Bruce S.; Roberts, Scott A.

Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 – a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle–Fuller–Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. We provide the code as an open-source Python Battery Mathematical Modeling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials.

More Details

Viability of S3 Object Storage for the ASC Program at Sandia

Kordenbrock, Todd; Templet, Gary J.; Ulmer, Craig; Widener, Patrick

Recent efforts at Sandia such as DataSEA are creating search engines that enable analysts to query the institution’s massive archive of simulation and experiment data. The benefit of this work is that analysts will be able to retrieve all historical information about a system component that the institution has amassed over the years and make better-informed decisions in current work. As DataSEA gains momentum, it faces multiple technical challenges relating to capacity storage. From a raw capacity perspective, data producers will rapidly overwhelm the system with massive amounts of data. From an accessibility perspective, analysts will expect to be able to retrieve any portion of the bulk data, from any system on the enterprise network. Sandia’s Institutional Computing is mitigating storage problems at the enterprise level by procuring new capacity storage systems that can be accessed from anywhere on the enterprise network. These systems use the simple storage service, or S3, API for data transfers. While S3 uses objects instead of files, users can access it from their desktops or Sandia’s high-performance computing (HPC) platforms. S3 is particularly well suited for bulk storage in DataSEA, as datasets can be decomposed into object that can be referenced and retrieved individually, as needed by an analyst. In this report we describe our experiences working with S3 storage and provide information about how developers can leverage Sandia’s current systems. We present performance results from two sets of experiments. First, we measure S3 throughput when exchanging data between four different HPC platforms and two different enterprise S3 storage systems on the Sandia Restricted Network (SRN). Second, we measure the performance of S3 when communicating with a custom-built Ceph storage system that was constructed from HPC components. Overall, while S3 storage is significantly slower than traditional HPC storage, it provides significant accessibility benefits that will be valuable for archiving and exploiting historical data. There are multiple opportunities that arise from this work, including enhancing DataSEA to leverage S3 for bulk storage and adding native S3 support to Sandia’s IOSS library.

More Details

Maximum Interior Voltage and Magnetic Field Penetration Through a Ferromagnetic Layer

Warne, Larry K.; Chen, Kenneth C.; Johnson, William A.

This report examines the problem of magnetic penetration of a conductive layer, including nonlinear ferromagnetic layers, excited by an electric current filament. The electric current filament is, for example, a nearby wire excited by a lightning strike. The internal electric field and external magnetic field are determined. Numerical results are compared to various analytical approximations to help understand the physics involved in the penetration.

More Details

Schmid factor crack propagation and tracking crystallographic texture markers of microstructural condition in direct energy deposition additive manufacturing of Ti-6Al-4V

Additive Manufacturing

Saville, Alec I.; Benzing, Jake T.; Vogel, Sven C.; Buckner, Jessica L.; Donohoue, Collin; Kustas, Andrew B.; Creuziger, Adam; Clarke, Kester D.; Clarke, Amy J.

Metallic additive manufacturing (AM) provides a customizable and tailorable manufacturing process for new engineering designs and technologies. The greatest challenge currently facing metallic AM is maintaining control of microstructural evolution during solidification and any solid state phase transformations during the build process. Ti-6Al-4V has been extensively surveyed in this regard, with the potential solid state and solidification microstructures explored at length. This work evaluates the applicability of previously determined crystallographic markers of microstructural condition observed in electron beam melting powder bed fusion (PBF-EB) builds of Ti-6Al-4V in a directed energy deposition (DED) build process. The aim of this effort is to elucidate whether or not these specific crystallographic textures are useful tools for indicating microstructural conditions in AM variants beyond PBF-EB. Parent β-Ti grain size was determined to be directly related to α-Ti textures in the DED build process, and the solid state microstructural condition could be inferred from the intensity of specific α-Ti orientations. Qualitative trends on the as-solidified β-Ti grain size were also determined to be related to the presence of a fiber texture, and proposed as a marker for as-solidified grain size in any cubic metal melted by AM. Analysis of the DED Ti-6Al-4V build also demonstrated a near complete fracture of the build volume, suspected to originate from accumulated thermal stresses in the solid state. Crack propagation was found to only appreciably occur in regions of slow cooling with large α+β colonies. Schmid factors for the basal and prismatic α-Ti systems explained the observed crack pathway, including slower bifurcation in colonies with lower Schmid factors of both slip systems. Colony morphologies and localized equiaxed β-Ti solidification were also found to originate from build pauses during production and uneven heating of the build edges during deposition. Tailoring of DED Ti-6Al-4V microstructures with the insight gained here is proposed, along with cautionary insight on preventing unplanned build pauses to maintain an informed and controlled thermal environment for microstructural control.

More Details

On-Line Waste Library V4.0 Supporting Information

Price, Laura L.

The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.

More Details

Exploring the Basic Physical Mechanisms of Cathode- and Anode-Initiated High-Voltage Surface Flashover

IEEE Transactions on Plasma Science

Brooks, William; Clark, Raimi; Young, Jacob; Hopkins, Matthew M.; Dickens, James; Neuber, Andreas

Surface flashover in vacuum imposes a substantial physical limit on modern, large-scale pulsed power. One of the ramifications is a minimum size requirement for new machines, which in itself becomes a hard barrier to the modernization and improvement of existing infrastructure. Pulsed power topologies require the physical mechanisms of both anode- and cathode-initiated flashover to be considered. Originally, the geometrical implications of field emission at the cathode triple junction (CTJ) motivated the usage of configurations that avoid electrons impinging on the insulating material. This will largely suppress the cathode-initiated flashover, which is best described by the secondary electron avalanche mechanism, gas desorption, and final breakdown in the desorbed gas. It depends on the cascade growth of a conducting plasma along the length of the insulator from the cathode. Mitigating the cathode-initiated flashover typically comes at the cost of a significant field enhancement at the anode triple junction (ATJ). In a typical implementation, the anode field may be three times higher than the cathode field for a given voltage, making the corresponding anode-initiated flashover much more common than otherwise. In the case of pulsed, anode-initiated flashover, experimental evidence suggests that charge is directly extracted from the insulator resulting in the insulator taking on a net positive charge advancing the anode potential. Along with accompanying gas desorption from the surface, the potential will then propagate from the anode toward the cathode until the effective length of the gap is sufficiently reduced to support flashover. The underlying physical mechanisms of cathode- and anode-directed flashover are discussed in light of previously gathered experimental data and recent experiments with pulsed, high-gradient, anode-initiated flashover.

More Details

Mini-DAQ: A lightweight, low-cost, high resolution, data acquisition system for wave energy converter testing

HardwareX

Bosma, Bret; Coe, Ryan G.; Bacelli, Giorgio; Brekken, Ted; Gunawan, Budi

As part of the development process, scaled testing of wave energy converter devices are necessary to prove a concept, study hydrodynamics, and validate control system approaches. Creating a low-cost, small, lightweight data acquisition system suitable for scaled testing is often a barrier for wave energy converter developers’ ability to test such devices. This paper outlines an open-source solution to these issues, which can be customized based on specific needs. This will help developers with limited resources along a path toward commercialization.

More Details

A model for K-shell x-ray yield from magnetic implosions at Sandia's Z machine

Physics of Plasmas

Schwarz, Jens; Vesey, Roger A.; Ampleford, David J.; Schaeuble, Marc-Andre S.; Giuliani, J.L.; Esaulov, A.; Dasgupta, A.; Jones, Brent M.

A zero-dimensional magnetic implosion model with a coupled equivalent circuit for the description of an imploding nested wire array or gas puff is presented. Circuit model results have been compared with data from imploding stainless steel wire arrays, and good agreement has been found. The total energy coupled to the load, E j × B, has been applied to a simple semi-analytic K-shell yield model, and excellent agreement with previously reported K-shell yields across all wire array and gas puff platforms is seen. Trade space studies in implosion radius and mass have found that most platforms operate near the predicted maximum yield. In some cases, the K-shell yield may be increased by increasing the mass or radius of the imploding array or gas puff.

More Details

Comparison of exponential integrators and traditional time integration schemes for the shallow water equations

Applied Numerical Mathematics

Eldred, Christopher; Brachet, Matthieu; Debreu, Laurent

The time integration scheme is probably one of the most fundamental choices in the development of an ocean model. In this paper, we investigate several time integration schemes when applied to the shallow water equations. This set of equations is accurate enough for the modeling of a shallow ocean and is also relevant to study as it is the one solved for the barotropic (i.e. vertically averaged) component of a three dimensional ocean model. We analyze different time stepping algorithms for the linearized shallow water equations. High order explicit schemes are accurate but the time step is constrained by the Courant-Friedrichs-Lewy stability condition. Implicit schemes can be unconditionally stable but, in practice lack accuracy when used with large time steps. In this paper we propose a detailed comparison of such classical schemes with exponential integrators. The accuracy and the computational costs are analyzed in different configurations.

More Details

V31 Test Report

Stofleth, Jerome H.; Crocker, Robert W.; Tribble, Megan K.

The V31 containment vessel was procured by the US Army Recovered Chemical Material Directorate (RCMD) as a third - generation EDS containment vessel. It is the fifth EDS vessel to be fabricated under Code Case 2564 of the 2019 ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel, based on the code case, is twenty-four (24) pounds TNT - equivalent for up to 1092 detonations. This report documents the results of explosive tests that were performed on the vessel at Sandia National Laboratories in Albuquerque, New Mexico to qualify the vessel for field operations use. There were three design basis configurations for qualification testing. Qualification test (1) consisted of a simulated M55 rocket motor and warhead assembly of 24lbs of Composition C-4 (30 lb TNT equivalent). This test was considered the maximum load case, based on modeling and simulation methods performed by Sandia prior to the vessel design phase. Qualification test (2) consisted of a regular, right circular cylinder, unitary charge, located central to the vessel interior of 19.2 lb of Composition C-4 (24 lb TNT equivalent). Qualification test (3) consisted of a 12-pack of regular, right circular cylinders of 2 lb each, distributed evenly inside the vessel (totaling 19.2 lb of C-4, or 24 lb TNT equivalent). All vessel acceptance criteria were met.

More Details

Magnetized High-Energy-Density Plasma Experiments at MIT

Hare, Jack; Datta, Rishabh; Varnish, Thomas; Lebedev, Sergey; Jerry, Chittenden; Crilly, Aidan; Halliday, Jack; Russell, Danny; Chandler, Katherine M.; Fox, Will; Hantao, Ji; Myers, Clayton; Aragon, Carlos; Jennings, Christopher A.; Ampleford, David J.; Hansen, Stephanie B.; Yager-Elorriaga, David A.; Harding, Eric H.; Shipley, Gabriel A.; Harmon, Roger; Gonzalez, Josue; Molina, Leo

Abstract not provided.

A Liquid Stratification Model to Predict Failure in Thermally Damaged EBW Detonators

Propellants, Explosives, Pyrotechnics

Hobbs, Michael L.; Coronel, Stephanie A.

In previous work, commercially available downward facing exploding bridgewire detonators (EBWs) were exposed to elevated temperatures. These detonators were then initiated using a firing set which discharged a high amplitude short duration electrical pulse into a thin gold bridgewire. Responses of the detonators were measured using photonic doppler velocimetry (PDV) and high-speed photography. A time delay of 2 μs between EBW initiation and first movement of an output flyer separated operable detonators from inoperable detonators or duds. In the current work, we propose a simple method to determine detonator operability from the calculated state of the detonator at the time the firing set is initiated. The failure criterion is based on the gap distance between the exploding bridgewire (EBW) and the adjacent initiating explosive within the detonator which is low-density pentaerythritol tetranitrate (PETN) that melts between 413–415 K (140–142 °C). The gap forms as PETN melts and flows to the bottom of the input pellet. Melting of PETN is modeled thermodynamically as an energy sink using a normal distribution spread over a temperature range between the onset temperature of 413 K and the ending temperature of 415 K. The extent of the melt is determined from the average temperature of the PETN. The PETN liquid is assumed to occupy the interstitial gas volume in the lower part of the input pellet. The vacated volume from the relocated liquid forms the gap between the EBW and the PETN. The remaining sandwiched layer consists of solid PETN particles and gas filling interstitial volume. We predict that a threshold gap between 17–27 μm separates properly functioning detonators from duds.

More Details

Reconfiguration of the Respiratory Tract Microbiome to Prevent and Treat Burkholderia Infection

Branda, Steven; Collette, Nicole; Aiosa, Nicole; Garg, Neha; Mageeney, Catherine M.; Williams, Kelly P.; Phillips, Ashlee; Hern, Kelsey; Arkin, Adam; Ricken, Bryce; Wilde, Delaney; Dogra, Sahiba; Humphrey, Brittany; Poorey, Kunal; Courtney, Colleen

New approaches to preventing and treating infections, particularly of the respiratory tract, are needed. One promising strategy is to reconfigure microbial communities (microbiomes) within the host to improve defense against pathogens. Probiotics and prebiotics for gastrointestinal (GI) infections offer a template for success. We sought to develop comparable countermeasures for respiratory infections. First, we characterized interactions between the airway microbiome and a biodefense-related respiratory pathogen (Burkholderia thailandensis; Bt), using a mouse model of infection. Then, we recovered microbiome constituents from the airway and assessed their ability to re-colonize the airway and protect against respiratory Bt infection. We found that microbiome constituents belonging to Bacillus and related genuses frequently displayed colonization and anti-Bt activity. Comparative growth requirement profiling of these Bacillus strains vs Bt enabled identification of candidate prebiotics. This work serves as proof of concept for airway probiotics, as well as a strong foundation for development of airway prebiotics.

More Details

High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation

Physical Review Applied

Bainbridge, Jonathan E.; Claussen, Neil; Iivanainen, Joonas; Schwindt, Peter D.

To detect a specific radio-frequency (rf) magnetic field, rf optically pumped magnetometers (OPMs) require a static magnetic field to set the Larmor frequency of the atoms equal to the frequency of interest. However, unshielded and variable magnetic field environments (e.g., an rf OPM on a moving platform) pose a problem for rf OPM operation. Here, we demonstrate the use of a natural-abundance rubidium vapor to make a comagnetometer to address this challenge. Our implementation builds upon the simultaneous application of several OPM techniques within the same vapor cell. First, we use a modified implementation of an OPM variometer based on 87Rb to detect and actively cancel unwanted external fields at frequencies 60Hz using active feedback to a set of field control coils. We exploit this stabilized field environment to implement a high-sensitivity rf magnetometer using 85Rb. Using this approach, we demonstrate the ability to measure rf fields with a sensitivity of approximately 9fTHz-1/2 inside a magnetic shield in the presence of an applied field of approximately 20μT along three mutually orthogonal directions. This demonstration opens up a path toward completely unshielded operation of a high-sensitivity rf OPM.

More Details

Combined thermographic phosphor and digital image correlation (TP + DIC) for simultaneous temperature and strain measurements

Strain

Jones, E.M.C.; Jones, A.R.; Winters, C.

Thermographic phosphors (TP) are combined with stereo digital image correlation (DIC) in a novel diagnostic, TP + DIC, to measure full-field surface strains and temperatures simultaneously. The TP + DIC method is presented, including corrections for nonlinear CMOS camera detectors and generation of pixel-wise calibration curves to relate the known temperature to the ratio of pixel intensities between two distinct wavelength bands. Additionally, DIC is employed not only for strain measurements but also for accurate image registration between the two cameras for the two-colour ratio method approach of phosphoric thermography. TP + DIC is applied to characterize the thermo-mechanical response of 304L stainless steel dog bones during tensile testing at different strain rates. The dog bones are patterned for DIC with Mg3F2GeO4:Mn (MFG) via aerosol deposition through a shadow mask. Temperatures up to 425°K (150°C) and strains up to 1.0 mm/mm are measured in the localized necking region, with conservative noise levels of 10°K and 0.01 mm/mm or less. Finally, TP + DIC is compared to the more established method of combining infrared (IR) thermography with DIC (IR + DIC), with results agreeing favourably. Three topics of continued research are identified, including cracking of the aerosol-deposited phosphor DIC features, incomplete illumination for pixels on the border of the phosphor features, and phosphor emission evolution as a function of applied substrate strain. This work demonstrates the combination of phosphor thermography and DIC and lays the foundation for further development of TP + DIC for testing in combined thermo-mechancial environments.

More Details
Results 4801–5000 of 99,299
Results 4801–5000 of 99,299