Publications

3 Results

Search results

Jump to search filters

Multi-scenario Extreme Weather Simulator application to heat waves: Ko’olauloa community resilience hub

Science and Technology for the Built Environment

Villa, Daniel V.; Mammoli, Andrea; Bianchi, Carlo; Lee, Sang H.; Carvallo, Juan P.

Heat waves are increasing in severity, duration, and frequency. The Multi-Scenario Extreme Weather Simulator (MEWS) models this using historical data, climate model outputs, and heat wave multipliers. In this study, MEWS is applied for planning of a community resilience hub in Hau’ula, Hawaii. The hub will have normal operations and resilience operations modes. Both these modes were modeled using EnergyPlus. The resilience operations mode includes cutting off air conditioning for many spaces to decrease power requirements during emergencies. Results were simulated for 300 future weather files generated by MEWS for 2020, 2040, 2060, and 2080. Shared socioeconomic pathways 2–4.5, 3–7.0 and 5–8.5 were used. The resilience operations mode results show two to six times increase of hours of exceedance beyond 32.2 °C from present conditions, depending on climate scenario and future year. The resulting decrease in thermal resilience enables an average decrease of energy use intensity of 26% with little sensitivity to climate change. The decreased thermal resilience predicted in the future is undesirable, but was not severe enough to require a more energy-intensive resilience mode. Instead, planning is needed to assure vulnerable individuals are given prioritized access to air-conditioned parts of the hub if worst-case heat waves occur.

More Details

PR100: Estimated Medium- and Heavy-Duty Electric Vehicle Adoption and Load Estimation in Puerto Rico through 2050

Garrett, Richard A.; Moog, Emily R.; Mammoli, Andrea; Lave, Matthew S.

The 2-year Puerto Rico Grid Resilience and Transition to 100% Renewable Energy Study analyzed stakeholder-driven pathways to Puerto Rico’s clean energy future. Outputs relating to electricity demand modeling were partially informed by estimates of electric vehicle adoption across all classes of medium- and heavy-duty vehicles (MHDVs), and the ensuing charging loads. To create these estimates, the team developed a transportation model for MHDVs in Puerto Rico to estimate the amount and geospatial distribution of energy used. Charging schedules for the different end uses of MHDVs were then used to construct electric load shapes assuming a portion of those vehicles would be replaced by battery electric counterparts. Study results showed that, by 2050, electric vehicles may constitute roughly 50% of the MHDV population in Puerto Rico. The resulting electrical demand curve attributable to MHDV charging showed that, for solar energy-based electrical systems with limited energy storage, this demand may create challenges unless appropriately managed either on the demand or supply side.

More Details
3 Results
3 Results