Interfacing durable materials to enable structural electronics
Abstract not provided.
Abstract not provided.
Advanced Materials
An experimental investigation and the optical modeling of the structural coloration produced from total internal reflection interference within 3D microstructures are described. Ray-tracing simulations coupled with color visualization and spectral analysis techniques are used to model, examine, and rationalize the iridescence generated for a range of microgeometries, including hemicylinders and truncated hemispheres, under varying illumination conditions. An approach to deconstruct the observed iridescence and complex far-field spectral features into its elementary components and systematically link them to ray trajectories that emanate from the illuminated microstructures is demonstrated. The results are compared with experiments, wherein microstructures are fabricated with methods such as chemical etching, multiphoton lithography, and grayscale lithography. Microstructure arrays patterned on surfaces with varying orientation and size lead to unique color-traveling optical effects and highlight opportunities for how total internal reflection interference can be used to create customizable reflective iridescence. The findings herein provide a robust conceptual framework for rationalizing this multibounce interference mechanism and establish approaches for characterizing and tailoring the optical and iridescent properties of microstructured surfaces.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Early on in the COVID-19 pandemic, potential ventilator shortages were a critical issue identified by national health care providers. Capacity modeling at the time suggested patient demand may exceed ventilator supply. Thus, the challenge became finding an urgent interim solution to meet health care needs. Our initial hypothesis was that CPAP technology could be modified to provide similar functionality to a ventilator, relieving demand and allowing physicians to decide which patients need high end machines, ultimately saving lives. In conjunction with medical experts and pulmonologists, we were able to identify three key thrusts associated with this research problem: (1) modification of CPAP technology to allow for 02 input that would be capable of providing ventilation; (2) development of an alarming function that would provide real-time audible alarms to alert medical personnel to critical conditions, which would be used inline with CPAP technology; and (3) a method of sterilizing expiratory air from such a system in order to protect medical personnel from biohazard, since CPAPs vent to the atmosphere. We were unable to realize results for thrust 1 (CPAP modification for 02); we identified potential safety issues associated with utilizing medical grade oxygen with a common CPAP device. In order to characterize and mitigate these issues, we would need to partner closely with a device manufacturer; such a partnership could not be achieved in the timeframe needed for this rapid response work. However, we determined that some medical grade BiPAP devices do not need this modification and that the significant progress on thrusts 2 and 3 would be sufficient to buy down risk of a massive ventilator shortage. Our team built a prototype alarm system that can be utilized with any assistive respiratory device to alert on all key conditions identified by medical personnel (high pressure, low pressure, apnea, loss of power, low battery). Finally, our team made significant progress in the rapid prototyping and demonstration of an inline UV air purifier device. The device is cost efficient and can be manufactured at scale with both commercially available and additively manufactured parts. Initial tests with SARS-CoV-2 analog bacteriophage MS2 show 99% efficacy at reducing bioburden. Following a successful demonstration of the prototype device with medical personnel, we were able to obtain follow-on (non-LDRD) funding to provide additional device characterization, validation, and production in order to respond to an immediate regional need.
Advanced Engineering Materials
Advances in printed electronics are predicated on the integration of sophisticated printing technologies with functional materials. Although scalable manufacturing methods, such as letterpress and flexographic printing, have significant history in graphic arts printing, functional applications require sophisticated control and understanding of nanoscale transfer of fluid inks. In this paper, a versatile platform is introduced to study and engineer printing forms, exploiting a microscale additive manufacturing process to design micro-architected materials with controllable porosity and deformation. Building on this technology, controlled ink transfer for submicron functional films is demonstrated. The design freedom and high-resolution 3D control afforded by this method provide a rich framework for studying mechanics of fluid transfer for advanced manufacturing processes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.