Publications

8 Results

Search results

Jump to search filters

Multilabel proportion prediction and out-of-distribution detection on gamma spectra of short-lived fission products

Annals of Nuclear Energy

Van Omen, Alan; Morrow, Tyler; Scott, Clayton; Leonard, Elliott

In the machine learning problem of multilabel classification, the objective is to determine for each test instance which classes the instance belongs to. In this work, we consider an extension of multilabel classification, called multilabel proportion prediction, in the context of radioisotope identification (RIID) using gamma spectra data. We aim to not only predict radioisotope proportions, but also identify out-of-distribution (OOD) spectra. We achieve this goal by viewing gamma spectra as discrete probability distributions, and based on this perspective, we develop a custom semi-supervised loss function that combines a traditional supervised loss with an unsupervised reconstruction error function. Our approach was motivated by its application to the analysis of short-lived fission products from spent nuclear fuel. In particular, we demonstrate that a neural network model trained with our loss function can successfully predict the relative proportions of 37 radioisotopes simultaneously. The model trained with synthetic data was then applied to measurements taken by Pacific Northwest National Laboratory (PNNL) to conduct analysis typically done by subject-matter experts. We also extend our approach to successfully identify when measurements are OOD, and thus should not be trusted, whether due to the presence of a novel source or novel proportions.

More Details

A novel methodology for gamma-ray spectra dataset procurement over varying standoff distances and source activities

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Fjeldsted, Aaron P.; Morrow, Tyler; Scott, Clayton; Zhu, Yilun; Holland, Darren E.; Hanks, Ephraim M.; Wolfe, Douglas E.

The adoption of machine learning approaches for gamma-ray spectroscopy has received considerable attention in the literature. Many studies have investigated the deployment of various algorithm architectures to a specific task. However, little attention has been afforded to the development of the datasets leveraged to train the models. Such training datasets typically span a set of environmental or detector parameters to encompass a problem space of interest to a user. Variations in these measurement parameters will also induce fluctuations in the detector response, including expected pile-up and ground scatter effects. Fundamental to this work is the understanding that 1) the underlying spectral shape varies as the measurement parameters change and 2) the statistical uncertainties associated with two spectra impact their level of similarity. While previous studies attribute some arbitrary discretization to the measurement parameters for the generation of their synthetic training data, this work introduces a principled methodology for efficient spectral-based discretization of a problem space. A signal-to-noise ratio (SNR) respective spectral comparison measure and a Gaussian Process Regression (GPR) model are used to predict the spectral similarity across a range of measurement parameters. This innovative approach effectively showcased its capability by dividing a problem space, ranging from 5 cm to 100 cm standoff distances and 5 μCi–100 μCi of 137Cs, into three unique combinations of measurement parameters. The findings from this work will aid in creating more robust datasets, which incorporate many possible measurement scenarios, reduce the number of required experimental test set measurements, and possibly enable experimental training data collection for gamma-ray spectroscopy.

More Details

A semi-supervised learning method to produce explainable radioisotope proportion estimates for NaI-based synthetic and measured gamma spectra

Van Omen, Alan; Morrow, Tyler

Quantifying the radioactive sources present in gamma spectra is an ever-present and growing national security mission and a time-consuming process for human analysts. While machine learning models exist that are trained to estimate radioisotope proportions in gamma spectra, few address the eventual need to provide explanatory outputs beyond the estimation task. In this work, we develop two machine learning models for a NaI detector measurements: one to perform the estimation task, and the other to characterize the first model’s ability to provide reasonable estimates. To ensure the first model exhibits a behavior that can be characterized by the second model, the first model is trained using a custom, semi-supervised loss function which constrains proportion estimates to be explainable in terms of a spectral reconstruction. The second auxiliary model is an out-of-distribution detection function (a type of meta-model) leveraging the proportion estimates of the first model to identify when a spectrum is sufficiently unique from the training domain and thus is out-of-scope for the model. In demonstrating the efficacy of this approach, we encourage the use of meta-models to better explain ML outputs used in radiation detection and increase trust.

More Details

Controlling radioisotope proportions when randomly sampling from Dirichlet distributions in PyRIID

Van Omen, Alan; Morrow, Tyler

As machine learning models for radioisotope quantification become more powerful, likewise the need for high-quality synthetic training data grows as well. For problem spaces that involve estimating the relative isotopic proportions of various sources in gamma spectra it is necessary to generate training data that accurately represents the variance of proportions encountered. In this report, we aim to provide guidance on how to target a desired variance of proportions which are randomly when using the PyRIID Seed Mixer, which samples from a Dirichlet distribution. We provide a method for properly parameterizing the Dirichlet distribution in order to maintain a constant variance across an arbitrary number of dimensions, where each dimension represents a distinct source template being mixed. We demonstrate that our method successfully parameterizes the Dirichlet distribution to target a specific variance of proportions, provided that several conditions are met. This allows us to follow a principled technique for controlling how random mixture proportions are generated which are then used downstream in the synthesis process to produce the final, noisy gamma spectra.

More Details

Questionnaire for Radioisotope Identification and Estimation from Gamma Spectra using PyRIID v2

Morrow, Tyler

Accurate targeting of radioisotope classifiers and estimators requires an understanding of the target problem space. In order to facilitate clear communication on expected model behavior and performance between practitioners and stakeholders on their problems, this questionnaire was created. Stakeholder responses form the basis of a trained model as well as the start of usage requirements for the model as it is integrated with analysis processes or detection systems. This questionnaire may also be useful to machine learning practitioners and gamma spectroscopists developing new algorithms as a starting point for characterizing their problem space, especially if they are using PyRIID.

More Details
8 Results
8 Results