Publications

Results 38201–38400 of 99,299

Search results

Jump to search filters

The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint

Mechanical Systems and Signal Processing

Smith, Scott A.; Catalfamo, Simone; Brake, Matthew R.W.; Schwingshackl, Christoph W.; Reusb, Pascal

In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratio variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.

More Details

Results from new multi-megabar shockless compression experiments at the Z machine

AIP Conference Proceedings

Davis, Jean-Paul; Knudson, Marcus D.; Brown, Justin L.

Sandia’s Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This work details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer than existing models.

More Details

Distributed Energy Systems: Security Implications of the Grid of the Future

Stamber, Kevin L.; Kelic, Andjelka; Foulk, James W.; Henry, Jordan M.; Stamp, Jason E.

Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective.

More Details

Implementation of a PETN failure model using ARIA's general chemistry framework

Hobbs, Michael L.

We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model, implementation, and validation.

More Details

Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4

Small, Leo J.; Foulk, James W.; Staiger, Chad L.; Martin, Rachel I.; Anderson, Travis M.; Chalamala, Babu C.; Soundappan, Thiagarajan; Tiwari, Monika; Subarmanian, Venkat R.

We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

More Details

Nuclear Security Futures Scenarios

Keller, Elizabeth; Warren, Drake E.; Hayden, Nancy K.; Passell, Howard; Malczynski, Leonard A.; Backus, George A.

This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

More Details

Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers

Birch, Gabriel C.; Woo, Bryana L.

This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infrared imagers.

More Details

Performance Comparison of Stion CIGS Modules to Baseline Monocrystalline Modules at the New Mexico Florida and Vermont Regional Test Centers: January 2015-December 2016

Lave, Matt; Burnham, Laurie; Stein, Joshua

This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.

More Details

Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation

Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy's Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandum of Understanding executed between the United States and Germany in 2011. The US/German workshops' results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.

More Details

Calendar Year 2016 Stationary Source Emissions Inventory

Evelo, Stacie

The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.

More Details

Probing Small-Molecule Degradation to Counter Enzyme Promiscuity

Rempe, Susan; Stevens, Mark J.; Rogers, David; Vanegas, Juan

Enzymes that degrade specific small molecules could save lives by neutralizing threats from chemical agents in the blood or environment, or by starving pathogenic cells, but promiscuous interactions with other molecules typically limit their effectiveness by blocking the enzyme active site. An obvious solution would be to re-engineer the enzyme to enhance catalytic fidelity, but lack of understanding about how enzymes discriminate between molecules remains a formidable challenge to this approach. Our recent work in collaboration with the University of Texas (UT) suggested a new approach and a model system for understanding enzyme specificity. Asparaginase enzymes catalyze degradation of asparagine, which forms the basis of a medical treatment. Competition by the abundant and chemically similar molecule, glutamine, interferes with asparagine decomposition, thus hindering enzyme efficacy. Asparaginase is advantageous as a model degradation enzyme because variants that demonstrate different binding affinities and catalytic rates can be compared. Here, we leveraged Sandia and the University of Maryland's strengths in molecular simulation, and UT experimental expertise in asparaginase modification and functional assays, to understand asparaginase specificity. Our results advanced a new hypothesis about asparaginase catalytic mechanism that explains for the first time why proximity between the substrate's alpha-carboxyl and carboxamide is absolutely required for catalysis. Based on those insights, we developed the first mutant (Q59L) asparaginase from E. coli that lacks activity toward glutamine. We used that mutant to show that glutaminase activity is required to kill cancer cells that have asparagine synthetase enzymes (ASNS), but not ASNS-negative cancer cells.

More Details

Validation Metrics for Deterministic and Probabilistic Data

Maupin, Kathryn A.; Swiler, Laura P.

The purpose of this document is to compare and contrast metrics that may be considered for use in validating computational models. Metrics suitable for use in one application, scenario, and/or quantity of interest may not be acceptable in another; these notes merely provide information that may be used as guidance in selecting a validation metric.

More Details

Examining metallic glass formation in LaCe:Nb by ion implantation

Nuclear Technology and Radiation Protection

Sisson, Richard

In order to combine niobium (Nb) with lanthanum (La) and cerium (Ce), Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. As a result, using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

More Details

Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene

Physical Chemistry Chemical Physics. PCCP

Decker, Z.C.J.; Au, Kendrew; Vereecken, L.; Sheps, Leonid

Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100 Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.

More Details

Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode

Physical Review Applied

Kadlec, Emil A.; Jarecki, Robert; Starbuck, Andrew L.; Peters, David; Davids, Paul

The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

More Details

Portable centrifugal microfluidic system for diagnostics in resource-limited settings

2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference, HI-POCT 2016

Phaneuf, Christopher; Vandernoot, Victoria A.; Koh, Chung Y.

The threats of disease outbreaks and exposure to biothreat agents, both accidental and intentional, demand field-deployable technology capable of rapid, sensitive, and accurate diagnosis. In order to address these public health concerns, we present a portable centrifugal microfluidic platform and demonstrate sensitive detection protein antigens, host response antibodies, and nucleic acids down to single digit starting copies. The nucleic acid detection utilizes an isothermal amplification via loop-mediated isothermal amplification (LAMP). The platform, which is composed of a compact optical system for laser induced fluorescence (LIF) detection, a quiet brushless motor, and an efficient non-contact heater, offers an easy-to-use system capable of performing sensitive biodetection in a constrained-resource environment.

More Details

Module-level paralleling of vertical GaN PiN diodes

WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications

Flicker, Jack D.; Brocato, Robert W.; Delhotal, Jarod J.; Neely, Jason C.; Sumner, Bjorn; Dickerson, Jeramy; Kaplar, Robert

The effects of paralleling low-current vertical Gallium Nitride (v-GaN) diodes in a custom power module are reported. Four paralleled v-GaN diodes were demonstrated to operate in a buck converter at 1.3 Apeak (792 mArms) at 240 V and 15 kHz switching frequency. Additionally, high-fidelity SPICE simulations demonstrate the effects of device parameter variation on power sharing in a power module. The device parameters studied were found to have a sub-linear relationship with power sharing, indicating a relaxed need to bin parts for paralleling. This result is very encouraging for power electronics based on low-current v-GaN and demonstrates its potential for use in high-power systems.

More Details

Empirical assessment of network-based Moving Target Defense approaches

Proceedings - IEEE Military Communications Conference MILCOM

Van Leeuwen, Brian P.; Stout, William; Urias, Vincent

Moving Target Defense (MTD) is based on the notion of controlling change across various system attributes with the objective of increasing uncertainty and complexity for attackers; the promise of MTD is that this increased uncertainty and complexity will increase the costs of attack efforts and thus prevent or limit network intrusions. As MTD increases complexity of the system for the attacker, the MTD also increases complexity and cost in the desired operation of the system. This introduced complexity may result in more difficult network troubleshooting and cause network degradation or longer network outages, and may not provide an adequate defense against an adversary in the end. In this work, the authors continue MTD assessment and evaluation, this time focusing on application performance monitoring (APM) under the umbrella of Defensive Work Factors, as well as the empirical assessment of a network-based MTD under Red Team (RT) attack. APM provides the impact of the MTD from the perspective of the user, whilst the RT element provides a means to test the defense under a series of attack steps based on the LM Cyber Kill Chain.

More Details

Shock compression experiments on Lithium Deuteride (LiD) single crystals

Journal of Applied Physics

Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

Shock compression experiments in the few hundred GPa (multi-Mbar) regime were performed on Lithium Deuteride single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ∼190 and 570 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of reshock states up to ∼920 GPa. The experimental measurements are compared with density functional theory calculations, tabular equation of state models, and legacy nuclear driven results that have been reanalyzed using modern equations of state for the shock wave standards used in the experiments.

More Details

Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces

ACS Photonics

Sinclair, Michael B.; Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Reno, John L.; Wendt, Joel R.; Keeler, Gordon A.

We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of ∼1300 at ∼10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (∼1 μm): a silicon-based implementation that achieves a quality factor of ∼350; and a gallium arsenide-based structure that achieves a quality factor of ∼600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.

More Details

Mechanical splitting of microtubules into protofilament bundles by surface-bound kinesin-1

Scientific Reports

Bachand, George D.; Vandelinder, Virginia; Adams, Peter G.

The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continue to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation.

More Details

Ultrafast Carrier Capture and Auger Recombination in Single GaN/InGaN Multiple Quantum Well Nanowires

ACS Photonics

Boubanga-Tombet, Stephane; Wright, Jeremy B.; Lu, Ping; Williams, Michael R.C.; Li, Changyi; Wang, George T.; Prasankumar, Rohit P.

Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. Here, we used this technique to study carrier dynamics in single GaN/InGaN core-shell nonpolar multiple quantum well nanowires. We find that intraband carrier-carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. The Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices.

More Details

Cabs Milestone I3 Report: Demonstration of Ability to Construct 3D Meshes of Electrodes Using Reconstructions from Micro-Tomography

Roberts, Scott A.; Ferraro, Mark E.

Mesoscale (100s of particles) electrochemical-thermal-mechanical models and simulations of NMC cathodes are a critical outcome of the CABS project. These simulations require mesostructure geometries and commensurate computational meshes on which to perform the simulations. While these geometries can be generated using a variety of methods, the highest-fidelity approach is to reconstruct the geometry directly from 3D experimental data/measurements. In this milestone report, we demonstrate our ability to create 3D computational meshes using the Conformal Decomposition Finite Element Method (CDFEM) on a selection of NMC cathodes that were imaged using X-Ray Computed Micro-Tomography (X-Ray CT, or simply XCT).

More Details

Refining the foundations for cyber zone defense

2016 8th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2016

Foulk, James W.; Sery, Paul

Since our last paper, cyber attacks have shown no evidence of declining in frequency or sophistication. We claim that applying isolation zones is an effective way to defend cyber systems; our team proposes a simulation and mathematical model that provide numerical data that supports this claim. This paper extends our earlier cyber zone defense (CZD) framework in two critical ways. First, we relax our assumption that zones completely isolate nodes and consider interzone boundaries to be porous. Second, we investigate methods to estimate one of the legacy parameters inherited from our earlier work and the new porosity parameter. The extended simulation and model more closely approximate real world cyber systems and have lower residuals than our previous investigation.

More Details

Dispersion dynamics of quantum cascade lasers

Optica

Burghoff, David; Yang, Yang; Reno, John L.; Hu, Qing

A key parameter underlying the efficacy of any nonlinear optical process is group velocity dispersion. In quantum cascade lasers (QCLs), there have been several recent demonstrations of devices exploiting nonlinearities in both the mid-infrared and the terahertz. Though the gain of QCLs has been well studied, the dispersion has been much less investigated, and several questions remain about its dynamics and precise origin. In this work, we use time-domain spectroscopy to investigate the dispersion of broadband terahertz QCLs, and demonstrate that contributions from both the material and the intersubband transitions are relevant. We show that in contrast to the laser gain—which is clamped to a fixed value above lasing threshold—the dispersion changes with bias even above threshold, which is a consequence of shifting intersubband populations. We also examine the role of higher-order dispersion in QCLs and discuss the ramifications of our result for devices utilizing nonlinear effects, such as frequency combs.

More Details

Hydroxyacetone production from C3 Criegee intermediates

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Taatjes, Craig A.; Liu, Fang; Rotavera, Brandon; Kumar, Manoj; Caravan, Rebecca; Osborn, David L.; Thompson, Ward H.; Lester, Marsha I.

Hydroxyacetone (CH3C(O)CH2OH) is observed as a stable end product from reactions of the (CH3)2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerization via hydrogen atom transfer and –OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. As a result, the hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.

More Details

Valley splitting of single-electron Si MOS quantum dots

Applied Physics Letters

Foulk, James W.; Harvey-Collard, Patrick; Jacobson, Noah T.; Baczewski, Andrew D.; Nielsen, Erik N.; Maurer, Leon; Montano, Ines; Rudolph, Martin; Carroll, M.S.; Yang, C.H.; Rossi, A.; Dzurak, A.S.; Muller, Richard P.

Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.

More Details

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian; Coon, Wesley; Keeler, Gordon A.; Fortune, Torben; Tauke-Pedretti, Anna; Wendt, Joel R.; Shaner, Eric A.; Davids, Paul; Kim, Jin K.; Peters, David

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details

Center for Integrated Nanotechnologies (CINT) Chemical Release Modeling Evaluation

Stirrup, Timothy S.

This evaluation documents the methodology and results of chemical release modeling for operations at Building 518, Center for Integrated Nanotechnologies (CINT) Core Facility. This evaluation is intended to supplement an update to the CINT [Standalone] Hazards Analysis (SHA). This evaluation also updates the original [Design] Hazards Analysis (DHA) completed in 2003 during the design and construction of the facility; since the original DHA, additional toxic materials have been evaluated and modeled to confirm the continued low hazard classification of the CINT facility and operations. This evaluation addresses the potential catastrophic release of the current inventory of toxic chemicals at Building 518 based on a standard query in the Chemical Information System (CIS).

More Details

Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices

ECS Journal of Solid State Science and Technology

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Dickerson, Jeramy; Fischer, Arthur J.; Baca, Albert G.; Douglas, Erica A.

“Ultra” wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG > 3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludes with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.

More Details

Measurements of the sound velocity of shock-compressed liquid silica to 1100 GPa

Journal of Applied Physics

Mccoy, Chad A.; Gregor, Michelle C.; Polsin, Danae N.; Fratanduono, Dayne E.; Celliers, Peter M.; Boehly, Thomas R.; Meyerhofer, David D.

The sound velocity in a shocked material provides information about its off-Hugoniot behavior of a material at high pressures. This information can be used to extend the knowledge gained in Hugoniot experiments and to model the re-shock and release behavior. Silica is one of the most important materials for equation of state studies because of its prevalence in the earth’s interior and the well-defined properties of α-quartz. This paper presents sound velocity measurements of amorphous fused silica over the range 200 to 1100 GPa using laser-driven shocks and an α- quartz standard. These measurements demonstrate the technique proposed by Fratanduono et al [J. Appl. Phys 116, 033517 (2014)] to determine the sound velocity from the arrival of acoustic perturbations. The results compare favorably to the SESAME 7386 equation-of-state table. The Grüneisen parameter was calculated from the sound velocity data and found to be Γ=0.66 ± 0.05 at densities above 6 g/cm3, an increase in precision by a factor of two over previous measurements.

More Details

Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

APL Photonics

Wu, Chongzhao; Jin, Yuan; Reno, John L.; Kumar, Sushil

A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

More Details

Macro Supply Chain Lifecycle Decision Analytics

Helinski, Ryan; Kao, Gio K.; Hamlet, Jason; Letchford, Joshua; Campbell, Philip L.; Anthony, Benjamin

This report summarizes a two-year LDRD project that investigated the problem of representing complex supply chains, identifying the worst risks and evaluating mitigation options. Our team developed a framework that includes a representation for business processes, risk assessment questions, risk indicators and methods for analyzing and summarizing the data. In our approach, the Process Matrix represents an overall supply chain for an end product in a high-level, tabular form. It connects the various touch-points of a business process including people, external vendors, tools, storage locations and transportation services while capturing the flow of both physical and intellectual artifacts. We believe these direct connections are exactly the things that a process owner can typically control. These material flows (both physical and intellectual) are also represented in a graph. This enables us to use graph-oriented analysis such as fault tree analysis and attack graph generation. Our approach is top-down, which helps users to get a more holistic understanding for a given amount of resources. Understanding the provenance of materials is difficult and it is easy to exhaust the analysts' resources. Rather than a tool to do vendor analysis or product comparison, our framework enables an enterprise-level analysis. The risk assessment questionnaires have a varying levels of detail and cover various aspects of the supply chain such as process steps, artifacts, suppliers, etc. and connections between these aspects such as artifact-storage, artifact-supplier, etc. Each question is further associated with one of seven risk indicators which can be used to summarize the risk. These risk indicators can also be weighted to reflect a user's concerns. We have successfully applied our framework to several use cases in various stages of its development and provided valuable insights to our partners, but it can also be applied to other complex systems outside of the supply chain security problem.

More Details

Molecular dynamics simulations of substitutional diffusion

Computational Materials Science

Zhou, Xiaowang; Jones, Reese E.; Gruber, J.

In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.

More Details

Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

Infrared Physics and Technology

Garwood, Tristan; Modine, Normand A.

The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.

More Details

Compound semiconductor integrated photonics for avionics

2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, AVFOP 2016

Tauke-Pedretti, Anna

This talk will focus on recent work done at Sandia National Laboratories in compound semiconductor integrated photonics relevant to avionics. Two technologies will be presented: Sandia's InP-based photonic integrated circuit platform which enables highly functional circuits and advanced heterogenous integration for microscale photovoltaic systems.

More Details

A Modular NMF Matching Algorithm for Radiation Spectra

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Koudelka, Melissa L.; Dorsey, Daniel J.

In real-world object identification systems, the operational mission may change from day to day. For example, a target recognition system may be searching for heavy armor one day, and surface-to-air assets the next, or a radiation detection system may be interested in detecting medical isotopes in one instance, and special nuclear material in another. To accommodate this 'mission of the day' type scenario, the underlying object database must be flexible and able to adjust to changing target sets. Traditional dimensionality reduction algorithms rely on a single basis set that is derived from the complete set of objects of interest, making missionspecific adjustment a significant task. In this work, we describe a method that uses many limited-size individual basis sets to represent objects of interest instead of a single unifying basis set. Thus, only the objects of interest for the mission at hand are used at any given time, and additional objects can be added to the system simply by training a basis for the new object. We demonstrate the modular identification system on the problem of identifying radioisotopes from their gamma ray spectra using nonnegative matrix factorization.

More Details

Ion-Specific Effects in Carboxylate Binding Sites

Journal of Physical Chemistry B

Rempe, Susan; Stevens, Mark J.

Specific ion binding by carboxylates (-COO-) is a broadly important topic because -COO- is one of the most common functional groups coordinated to metal ions in metalloproteins and synthetic polymers. We apply quantum chemical methods and the quasi-chemical free-energy theory to investigate how variations in the number of -COO- ligands in a binding site determine ion-binding preferences. We study a series of monovalent (Li+, Na+, K+, Cs+) and divalent (Zn2+, Ca2+) ions relevant to experimental work on ion channels and ionomers. Of two competing hypotheses, our results support the ligand field strength hypothesis and follow the reverse Hofmeister series for ion solvation and ion transfer from aqueous solution to binding sites with the preferred number of ligands. New insight arises from the finding that ion-binding sequences can be manipulated and even reversed just by constraining the number of carboxylate ligands in the binding sites. Our results help clarify the discrepancy in ion association between molecular ligands in aqueous solutions and ionomers, and their chemical analogues in ion-channel binding sites.

More Details

Proposed 10 MWe North-Facing Falling Particle Receiver Design

Mills, Brantley; Ho, Clifford K.

A 10 MWe north-facing falling particle receiver (FPR) is proposed in this document to support performance comparisons of this design when compared with a direct s-CO2 solar receiver concept. This document describes the modeling and simulation effort for the proposed FPR to evaluate its thermal performance. A description of the modeling strategy is provided in the following section including details on the receiver and heliostat field. Then, this model is used to evaluate the performance of the receiver at various times of throughout the year. Finally, the results of this analysis are summarized. Direct comparisons with a similarly sized s-CO2 solar receiver concept are not discussed here.

More Details

Instability and efficiency of mixed halide perovskites CH3NH3AI3-xClx (A = Pb and Sn): A first-principles, computational study

Chemistry of Materials

He, Yuping

Here, we carried out calculations based on density functional theory to investigate the electronic, vibrational, and dielectric properties of mixed halide perovskites CH3NH3AI3–xClx with A = Pb and Sn. Computed free energies indicated that Cl mixed systems may be formed only for Cl concentrations not exceeding 1019 cm–3, and phonon calculations showed that the disorder induced in the host lattice by the presence of a smaller halogen is responsible for mechanical instabilities. However, we found that the presence of chloride may be beneficial to the electronic properties of the perovskites. Chloride anions cause the organic cations to be displaced from the center of the cage; such a displacement induces preferential orientations of the cation dipole, which in turn are responsible for notable changes in the dielectric properties of the material and possibly for the formation of local ferroelectric domains. The latter are instrumental in separating electron hole pairs and hence in contributing to long charge-carrier diffusion lengths, in spite of polarons being more likely formed in mixed perovksites than in CH3NH3AI3.

More Details

Heterogeneous Chain Dynamics and Aggregate Lifetimes in Precise Acid-Containing Polyethylenes: Experiments and Simulations

Macromolecules

Middleton, L.R.; Tarver, Jacob D.; Cordaro, Joseph G.; Tyagi, Madhusudan; Soles, Christopher L.; Frischknecht, Amalie L.; Winey, Karen I.

Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation of the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. The characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.

More Details

Designing energy dissipation properties via thermal spray coatings

Surface and Coatings Technology

Brake, Matthew R.W.; Hall, Aaron; Madison, Jonathan D.

The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributable to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.

More Details

Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion

Journal of Chemical Theory and Computation

Rempe, Susan; Chaudhari, Mangesh I.; Pratt, Lawrence R.; Soto, Fernando A.; Balbuena, Perla B.; Nair, Jijeesh R.

Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6- transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.

More Details

Reflections on Culture Work Planning and Metrics at SNL

Massey, Karli

The NNSA/SNL detail provided an NNSA safety professional a rare opportunity to immerse in the SNL documents, corporate guidance, local management and some processes as if I was an SNL employee. My detail was to identify opportunities for strengthening safety culture, especially as it relates to implementing engineered safety; seek site wide safety culture improvement opportunities; and to identify safety metric opportunities. To this regard, I was given wide latitude in studying and investigating how SNL functions, good access to many SNL websites. In an introductory letter from Division 4000's Catherine Green, she expressed the desire for all of SNL to openly share with me, thus making my collection of ideas about SNL more meaningful. I was able to talk with and learn from so many different SNL organizations and people including governance to custodial service; researchers, operation and safety; and, with all grades of employees especially mid-level center or organization managers. The ESH Coordinators were personally valuable in helping me see the big picture and understand some of the challenges. My hat is off to all those who volunteered to collaborate with me. One intent of this detail was to gain experience and knowledge so I could better perform my NNSA roles with greater awareness and understanding of SNL challenges and safety conditions. Without a doubt you at SNL have made this a reality. I appreciate the opportunity.

More Details

Chlorination of zirconium (0001) surface: A first-principles study

Chemical Physics Letters

Kim, E.; Weck, Philippe F.; Poineau, F.; Paviet, P.

The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

More Details

Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions]

Inorganic Chemistry

Alam, Todd M.; Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.; Pascual, David; Lopez-De-Luzuriaga, Jose M.; Bacon, Jeffrey W.; Doerrer, Linda H.

Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR)4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc)4(OH2)] (1), [PtMg(tba)4(OH2)] (2), [PtCa(tba)4(OH2)] (3), [PtZn(tba)4(OH2)] (4), and a mononuclear control (Ph4P)2[Pt(SAc)4] (5) have been synthesized. Crystallographic data show close Pt–M contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph4P)2[Pt(SAc)4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH3 (thioacetate, SAc), C6H5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc)4(OH2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.

More Details

Comment on "Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity"

Physical Review Letters

Blancard, C.; Colgan, J.; Cosse, Ph; Faussurier, G.; Fontes, C.J.; Gilleron, F.; Golovkin, I.; Hansen, Stephanie B.; Iglesias, C.A.; Kilcrease, D.P.; Macfarlane, J.J.; Pain, J.C.; Sherrill, M.; Wilson, B.G.

Recent R-matrix calculations claim to provide a significant enhancement in the opacity of Fe XVII due to atomic core excitations and assert that this enhancement is consistent with recent measurements of higher-than-predicted iron opacities. Here this comment shows that the standard opacity models which have already been directly compared with experimental data produce photon absorption cross-sections for Fe XVII that are effectively equivalent to the R-matrix opacities reported in.

More Details

First-Principles Modeling of Mn(II) Migration above and Dissolution from Li x Mn 2 O 4 (001) Surfaces

Chemistry of Materials

Leung, Kevin

The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel LixMn2O4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH surface groups; and chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li2CO3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.

More Details

Sandia National Laboratories Internship

Tvede, Hayley R.

For the 2016 Fall semester, I participated in the internship program with Sandia National Laboratories. I am a criminology and political science double major, interested in pursuing a career in law enforcement. This is the first time Sandia has participated in an internship program with the Sociology department at UNM. Prior to this internship opportunity, most of the internships I had seen available by Sandia Labs involved hard sciences and business degree students.

More Details

Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance

IEEE Transactions on Nuclear Science

King, Michael P.; Wu, X.; Eller, Manfred; Samavedam, Srikanth; Shaneyfelt, Marty R.; Silva, Antoinette I.; Draper, Bruce L.; Rice, William C.; Meisenheimer, Timothy L.; Zhang, E.X.; Haeffner, T.D.; Ball, D.R.; Shetler, K.J.; Alles, M.L.; Kauppila, J.S.; Massengill, L.W.

Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibit a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.

More Details

Marginal Loss Calculations for the DCOPF

Castillo, Andrea

The purpose of this paper is to explain some aspects of including a marginal line loss approximation in the DCOPF. The DCOPF optimizes electric generator dispatch using simplified power flow physics. Since the standard assumptions in the DCOPF include a lossless network, a number of modifications have to be added to the model. Calculating marginal losses allows the DCOPF to optimize the location of power generation, so that generators that are closer to demand centers are relatively cheaper than remote generation. The problem formulations discussed in this paper will simplify many aspects of practical electric dispatch implementations in use today, but will include sufficient detail to demonstrate a few points with regard to the handling of losses.

More Details

Optimal Test Selection for Prediction Uncertainty Reduction

Journal of Verification, Validation and Uncertainty Quantification

Mullins, Joshua G.; Mahadevan, Sankaran; Urbina, Angel U.

Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecise data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. The proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.

More Details

Evaluation of formation water chemistry and scale prediction: Bakken Shale

Applied Geochemistry

Brady, Patrick V.; Thyne, Geoffrey

Determination of in situ formation water chemistry is an essential component of reservoir management. This paper details the use of thermodynamic computer models to calculate reservoir pH and restore produced water analyses for prediction of scale formation. Bakken produced water samples were restored to formation conditions and calculations of scale formation performed. In situ pH is controlled by feldspar-clay equilibria. Calcite scale is readily formed due to changes in pH during pressure drop from in situ to surface conditions. The formation of anhydrite and halite scale, which has been observed, was predicted only for the most saline samples. In addition, the formation of anhydrite and/or halite may be related to the localized conditions of increased salinity as water is partitioned into the gas phase during production.

More Details

Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights

Computational Statistics

Pebay, Philippe P.; Terriberry, Timothy B.; Kolla, Hemanth; Bennett, Janine C.

Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.

More Details

A hybridizable discontinuous Galerkin method for modeling fluid–structure interaction

Journal of Computational Physics

Miller, Scott T.; Sheldon, Jason P.; Pitt, Jonathan S.

This work presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid–structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian–Eulerian Navier–Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modeling is coupling together their disparate mathematics on the fluid–solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.

More Details

Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer

Neuropsychologia

Trumbo, Michael C.S.; Matzen, Laura E.; Coffman, Brian A.; Hunter, Michael A.; Jones, Aaron P.; Robinson, Charles S.H.; Clark, Vincent P.

Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.

More Details

Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources

Review of Scientific Instruments

Schollmeier, Marius; Loisel, Guillaume P.

Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90∘ which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

More Details

Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

International Journal of Fatigue

Castelluccio, Gustavo M.; Musinski, William D.; Mcdowell, David L.

Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Although fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. In this paper we discuss multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) to very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. We conclude by discussing some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.

More Details

A rapid spin column-based method to enrich pathogen transcripts from eukaryotic host cells prior to sequencing

PLoS ONE

Meagher, Robert M.; Poorey, Kunal; LaBauve, Annette E.; Hamblin, Rachelle H.; Williams, Kelly P.; Bent, Zachary W.

When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich for pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ∼400-fold, and allowed the recovery of transcripts from ∼2000-3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.

More Details

High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

Acta Astronautica

Furnish, Michael D.

We applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM) max of 50×10−5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount (~1 cm/s) to avert collision ~a year in advance. Comet model calculations indicate for CM=5×10−4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5×1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.

More Details

Levelized cost of energy for a Backward Bent Duct Buoy

International Journal of Marine Energy

Bull, Diana L.; Jenne, D.S.; Smith, Christopher S.; Copping, Andrea E.; Copeland, Robert

The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

More Details

Phonon-based scalable platform for chip-scale quantum computing

AIP Advances

Reinke, Charles M.; El-Kady, Ihab F.

We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

More Details

Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

Physics of Plasmas

Narkis, J.; Rahman, H.U.; Ney, P.; Desjarlais, Michael P.; Wessel, F.J.; Conti, F.; Valenzuela, J.C.; Beg, F.N.

1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field ( J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. Delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.

More Details

SALSA3D: A tomographic model of compressional wave slowness in the earth’s mantle for improved travel-time prediction and travel-time prediction uncertainty

Bulletin of the Seismological Society of America

Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; Young, Christopher J.; Encarnacao, Andre V.; Chael, Eric P.; Phillips, W.S.

The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. Motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source to receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. The computed pattern of uncertainty differs significantly from that of 1D distance-dependent traveltime uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.

More Details

Measurement of High-Energy Neutron Flux above Ground Utilizing a Spallation Based Multiplicity Technique

IEEE Transactions on Nuclear Science

Marleau, P.; Roecker, Caleb; Bernstein, Adam; Vetter, Kai

Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. These results demonstrate the feasibility of future below ground measurements with MARS.

More Details

Radionuclide removal by apatite

American Mineralogist

Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

A growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite's stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity and show how apatites might be used to environmental advantage in the future.

More Details

Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data

IEEE Transactions on Aerospace and Electronic Systems

West, Roger D.; Gunther, Jacob H.; Moon, Todd K.

In this paper, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts to a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.

More Details

Liquid surfaces for fusion plasma facing components—A critical review. Part I: Physics and PSI

Nuclear Materials and Energy

Nygren, Richard; Tabares, F.L.

This review of the potential of robust plasma facing components (PFCs) with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions. In the paper are a set of questions and related criteria by which we will judge the progress and readiness of liquid surface PFCs. Part-II (separate paper) will cover R&D on the technology-oriented aspects of liquid surfaces including the liquid surfaces as integrated first walls in tritium breeding blankets, tritium retention and recovery, and safety.

More Details

A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver

Journal of Computational Physics

Bettencourt, Matthew T.; Wolf, Eric M.; Causley, Matthew; Christlieb, Andrew

We propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, unconditionally stable solver for the wave equation. This method is not subject to a CFL restriction, limiting the ratio of the time step size to the spatial step size, typical of explicit methods, while maintaining computational cost and code complexity comparable to such explicit schemes. We describe the implementation in one and two dimensions for both electrostatic and electromagnetic cases, and present the results of several standard test problems, showing good agreement with theory with time step sizes much larger than allowed by typical CFL restrictions.

More Details

Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data

IEEE Transactions on Aerospace and Electronic Systems

West, Roger D.; Gunther, Jacob H.; Moon, Todd K.

In this paper, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts to a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.

More Details

Inductively coupled BCl3/Cl2 /Ar plasma etching of Al-rich AlGaN

Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films

Douglas, Erica A.; Sanchez, Carlos A.; Kaplar, Robert; Allerman, A.A.; Baca, Albert G.

Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl3 to Cl2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail the effects of small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.

More Details

Summary Report: NMSBA CY 2016 - AEgis Technologies Group Inc. #12458

Bellum, John C.; Field, Ella

AEgis requires large area partial mirror optics consisting of partially reflecting optical coatings on large dimension substrates for high energy laser (HEL) applications. The partial mirrors should transmit nearly the same small fraction of HEL radiation incident from a wide range of angles of incidence (AOIs), and the laser-induced damage threshold (LIDT) of the coatings should be high enough for them to be able to withstand direct exposure to near infrared CW HEL radiation at multi-kilowatt/cm2 power levels. The transmitted fraction of incident HEL radiation should reach an array of detectors at power levels high enough for reliable detection but low enough to not damage the detectors. The reflected fraction of incident HEL radiation should scatter into a divergent pattern so as to be eye safe at a distance of ~ 200 m from the mirror in the case of 100 kilowatt incident laser power. The detector array together with the partial mirror optic and possible additional optics that provide divergent scattering of reflected HEL radiation constitute what AEgis refers to as a target board. The target board use environment may vary from benign, indoor laboratory conditions to harsh, outdoor conditions in tests on the ground as well as in air. Under this NMSBA project, Sandia agreed to apply its extensive expertise and capability in the design and production of high LIDT coatings on large dimension optics for high power pulsed laser radiation to advise and assist AEgis in the design and development of high LIDT coatings for the partial mirror optic. Sandia and AEgis met several times to discuss the partial mirror and target board requirements, and Sandia was guided in its work by these discussions as well as by the partial mirror and target board requirement summaries of Tables 1 and 2, respectively, that were provided by AEgis.

More Details
Results 38201–38400 of 99,299
Results 38201–38400 of 99,299