Effect of Machining Processes on the Perceived Mechanical Properties of Tantalum Refractory Alloys
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Welding Journal
During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering tools to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.
Abstract not provided.
Abstract not provided.
Wear
This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430 °C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volume gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10−4 mm3/N m) were observed at 430 °C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430 °C. The results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The effects of heat treatment parameters were examined in complex electrical contact alloys containing Pd-Ag-Cu-Au-Pt. These alloys (Paliney tradename, Deringer-Ney Inc., Bloomfield, CT) are strengthened by precipitation reactions. During processing such as glass-to-metal joining in hermetic connectors, if the cooling rate is too slow, discontinuous precipitation (DP) of lamellar 2nd phases can spoil the strengthening effect. Two different solutionizing temperatures were employed and the effects of cooling rates between 6 C/min and >200 C/min were studied. Novel metallographic techniques were developed to reveal the microstructure of these corrosion resistant alloys and quantitative image analysis (QIA) was used to determine the amount of 2nd phase precipitates. Vickers and Knoop microhardness testing was performed to determine the effects of heat treatment parameters on mechanical properties.
Science and Technology of Welding and Joining
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.