The microelectronics industry seeks screening tools that can be used to verify the origin of and track integrated circuits (ICs) throughout their lifecycle. Embedded circuits that measure process variation of an IC are well known. This paper adds to previous work using these circuits for studying manufacturer characteristics on final product ICs, particularly for the purpose of developing and verifying a signature for a microelectronics manufacturing facility (fab). We present the design, measurements and analysis of 159 silicon ICs which were built as a proof of concept for this purpose. 80 copies of our proof of concept IC were built at one fab, and 80 more copies were built across two lots at a second fab. Using these ICs, our prototype circuits allowed us to distinguish these two fabs with up to 98.7% accuracy and also distinguish the two lots from the second fab with up to 98.8% accuracy.
The Hippogriff camera developed at Sandia National Laboratories as part of the Ultra-Fast X-ray Imager (UXI) program is a high-speed, multi-frame, time-gated imager for use on a wide variety of High Energy Density (HED) physics experiments on both Sandia's Z-Machine and the National Ignition Facility. The camera is a 1024 x 448 pixel array with 25 μm spatial resolution, containing 2 frames per pixel natively and has achieved 2 ns minimum integration time. It is sensitive to both optical photons as well as soft X-rays up to ∼6 keV. The Hippogriff camera is the second generation UXI camera that contains circuitry to trade spatial resolution for additional frames of temporal coverage. The user can reduce the row-wise spatial resolution from the native 25 μm to increase the number of frames in a data set to 4 frames at 50 μm or 8 frames at 100 μm spatial resolution. This feature, along with both optical and X-ray sensitivity, facilitates additional experimental flexibility. Minimum signal is 1500 erms and full well is 1.5 million e-.