Publications

Results 1–25 of 34

Search results

Jump to search filters

Tetrahedral Mesh Adaptation for Lagrangian Shock Hydrodynamics

Computers and Mathematics with Applications (Oxford)

Ibanez-Granados, Daniel A.; Love, Edward L.; Voth, Thomas E.; Overfelt, James R.; Laros, James H.; Hansen, Glen H.

Lagrangian shock hydrodynamics simulations will fail to proceed past a certain time if the mesh is approaching tangling. A common solution is an Arbitrary Lagrangian Eulerian (ALE) form, in which the mesh is improved (remeshing) and the solution is remapped onto the improved mesh. The simplest remeshing techniques involve moving only the nodes of the mesh. More advanced remeshing techniques involve altering the mesh connectivity in portions of the domain in order to prevent tangling. Work has been done using Voronoi-based polygonal mesh generators and 2D quad/triangle mesh adaptation. Here, this paper presents the use of tetrahedral mesh adaptation methods as the remeshing step in an otherwise Lagrangian finite element shock hydrodynamics code called Alexa.

More Details

An MPI+X implementation of contact global search using Kokkos

Engineering with Computers

Hansen, Glen H.; Xavier, Patrick G.; Mish, Samuel P.; Voth, Thomas E.; Heinstein, Martin W.; Glass, Micheal W.

This paper describes an approach that seeks to parallelize the spatial search associated with computational contact mechanics. In contact mechanics, the purpose of the spatial search is to find “nearest neighbors,” which is the prelude to an imprinting search that resolves the interactions between the external surfaces of contacting bodies. In particular, we are interested in the contact global search portion of the spatial search associated with this operation on domain-decomposition-based meshes. Specifically, we describe an implementation that combines standard domain-decomposition-based MPI-parallel spatial search with thread-level parallelism (MPI-X) available on advanced computer architectures (those with GPU coprocessors). Our goal is to demonstrate the efficacy of the MPI-X paradigm in the overall contact search. Standard MPI-parallel implementations typically use a domain decomposition of the external surfaces of bodies within the domain in an attempt to efficiently distribute computational work. This decomposition may or may not be the same as the volume decomposition associated with the host physics. The parallel contact global search phase is then employed to find and distribute surface entities (nodes and faces) that are needed to compute contact constraints between entities owned by different MPI ranks without further inter-rank communication. Key steps of the contact global search include computing bounding boxes, building surface entity (node and face) search trees and finding and distributing entities required to complete on-rank (local) spatial searches. To enable source-code portability and performance across a variety of different computer architectures, we implemented the algorithm using the Kokkos hardware abstraction library. While we targeted development towards machines with a GPU accelerator per MPI rank, we also report performance results for OpenMP with a conventional multi-core compute node per rank. Results here demonstrate a 47 % decrease in the time spent within the global search algorithm, comparing the reference ACME algorithm with the GPU implementation, on an 18M face problem using four MPI ranks. While further work remains to maximize performance on the GPU, this result illustrates the potential of the proposed implementation.

More Details

Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

Journal of Nuclear Materials

Chen, Qiushi C.; Ostien, Jakob O.; Hansen, Glen H.

At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model. © 2013 Elsevier B.V. All rights reserved.

More Details
Results 1–25 of 34
Results 1–25 of 34