Publications

Results 1–25 of 75

Search results

Jump to search filters

Hybrid Integration of III-V Solar Microcells for High-Efficiency Concentrated Photovoltaic Modules

IEEE Journal of Selected Topics in Quantum Electronics

Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Cruz-Campa, Jose L.; Alford, Charles; Sanchez, Carlos A.; Sweatt, W.C.; Jared, Bradley H.; Keeler, Gordon A.; Paap, Scott M.; Okandan, Murat; Li, Lan; Li, Duanhui; Gu, Tian; Hu, Juejun; Nielson, Gregory N.

The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.

More Details

Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces

Nature Communications

Liu, Sheng; Shcherbakov, Maxim R.; Zubyuk, Varvara V.; Vaskin, Aleksandr; Vabishchevich, Polina P.; Keeler, Gordon A.; Pertsch, Thomas; Dolgova, Tatyana V.; Staude, Isabelle; Brener, Igal; Fedyanin, Andrey A.

Optical metasurfaces are regular quasi-planar nanopatterns that can apply diverse spatial and spectral transformations to light waves. However, metasurfaces are no longer adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. We experimentally realise an ultrafast tunable metasurface consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type resonances in the near infrared. Using transient reflectance spectroscopy, we demonstrate a picosecond-scale absolute reflectance modulation of up to 0.35 at the magnetic dipole resonance of the metasurfaces and a spectral shift of the resonance by 30 nm, both achieved at unprecedentedly low pump fluences of less than 400 μJ cm-2. Our findings thereby enable a versatile tool for ultrafast and efficient control of light using light.

More Details

Huygens' Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

Nano Letters

Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; Wolf, Omri; Sinclair, Michael B.; Reno, John L.; Keeler, Gordon A.; Staude, Isabelle; Brener, Igal

Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.

More Details

Sub-micrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide

IEEE Photonics Journal (Online)

Campione, Salvatore; Wood, Michael G.; Serkland, Darwin K.; Parameswaran, Sivasubramanian; Ihlefeld, Jon F.; Luk, Ting S.; Wendt, Joel R.; Geib, Kent; Keeler, Gordon A.

Here, epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The non-resonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. In particular, we show that non-resonant electroabsorption modulators with sub-micron lengths and greater than 5 dB extinction ratios may be achieved through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.

More Details

High-mobility transparent conducting oxides for compact epsilon-near-zero silicon integrated optical modulators

Optics InfoBase Conference Papers

Wood, Michael G.; Campione, Salvatore; Serkland, Darwin K.; Parameswaran, Sivasubramanian; Ihlefeld, Jon F.; Luk, Ting S.; Wendt, Joel R.; Geib, Kent M.; Keeler, Gordon A.

We study the role of carrier mobility in transparent conducting oxides integrated into epsilon-near-zero modulators. High-mobility materials including CdO enable sub-micron length electroabsorption modulators through >4dB/μm extinction ratios.

More Details

III-V dielectric metasurfaces: enhanced nonlinearities and emission control

Optics InfoBase Conference Papers

Liu, Sheng; Vaskin, Aleksandr; Vabishchevich, P.P.; Addamane, Sadhvikas; Keeler, Gordon A.; Reno, John L.; Yang, Yuanmu; Staude, Isabelle; Balarishnan, Ganesh; Sinclair, Michael B.; Brener, Igal

Using III-V dielectric metasurfaces, we experimentally demonstrate resonantly enhanced harmonic generations up to the 4th order. Moreover, we observe large enhancements and spectral tailoring of the photoluminescence of quantum dots embedded inside dielectric metasurfaces.

More Details

Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces

ACS Photonics

Sinclair, Michael B.; Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Reno, John L.; Wendt, Joel R.; Keeler, Gordon A.

We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of ∼1300 at ∼10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (∼1 μm): a silicon-based implementation that achieves a quality factor of ∼350; and a gallium arsenide-based structure that achieves a quality factor of ∼600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.

More Details

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian; Coon, Wesley; Keeler, Gordon A.; Fortune, Torben; Tauke-Pedretti, Anna; Wendt, Joel R.; Shaner, Eric A.; Davids, Paul; Kim, Jin K.; Peters, David

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details

Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces

Nano Letters

Liu, Sheng; Yang, Yuanmu; Keeler, Gordon A.; Reno, John L.; Sinclair, Michael B.; Brener, Igal; Peake, Gregory M.; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas

Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10-5 with ∼3.4 GW/cm2 pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.

More Details

Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers

Optics Express

Campione, Salvatore; Kim, Iltai; De Ceglia, Domenico; Keeler, Gordon A.; Luk, Ting S.

We investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathway to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission.

More Details

III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

Advanced Optical Materials

Liu, Sheng; Brener, Igal; Sinclair, Michael B.; Keeler, Gordon A.; Reno, John L.

We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

More Details

Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs

IEEE Transactions on Components, Packaging and Manufacturing Technology

Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; Geib, Kent M.; Briggs, Ronald D.; Foulk, James W.; Shaffer, Ryan; Clevenger, Jascinda; Patrizi, Gary; Klem, John F.; Tauke-Pedretti, Anna; Nordquist, Christopher D.

Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor $I$-$V$ characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i.e., positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. The suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III-V/Si heterogeneously integrated electronics.

More Details
Results 1–25 of 75
Results 1–25 of 75