Publications

Results 1–25 of 123
Skip to search filters

Machined phononic crystals to block high-order Lamb waves and crosstalk in through-metal ultrasonic communication systems

Applied Physics Letters

Sugino, Christopher S.; Gerbe, Romain G.; Baca, Ehren B.; Reinke, Charles M.; Ruzzene, Massimo R.; Erturk, Alper E.; El-Kady, I.

For systems that require complete metallic enclosures (e.g., containment buildings for nuclear reactors), it is impossible to access interior sensors and equipment using standard electromagnetic techniques. A viable way to communicate and supply power through metallic barriers is the use of elastic waves and ultrasonic transducers, introducing several design challenges that must be addressed. Specifically, the use of multiple communication channels on the same enclosure introduces an additional mechanism for signal crosstalk between channels: guided waves propagating in the barrier between channels. This work numerically and experimentally investigates a machined phononic crystal to block MHz Lamb wave propagation between ultrasonic communication channels, greatly reducing wave propagation and the resulting crosstalk voltage. Blind grooves are machined into one or both sides of a metallic barrier to introduce a periodic unit cell, greatly altering the guided wave dispersion in the barrier. Numerical simulations are used to determine a set of groove geometries for testing, and experiments were performed to characterize the wave-blocking performance of each design. The best-performing design was tested using piezoelectric transducers bonded to the barrier, showing a 14.4 dB reduction in crosstalk voltage. Overall, the proposed periodic grooving method is a promising technique for completely isolating ultrasonic power/data transfer systems operating in a narrow frequency range.

More Details

Parallel Solver Framework for Mixed-Integer PDE-Constrained Optimization

Phillips, Cynthia A.; Chatter, Michelle A.; Eckstein, Jonathan E.; Erturk, Alper E.; El-Kady, I.; Gerbe, Romain G.; Kouri, Drew P.; Loughlin, William L.; Reinke, Charles M.; Rokkam, Rohith R.; Ruzzene, Massimo R.; Sugino, Chris S.; Swanson, Calvin S.; van Bloemen Waanders, Bart G.

ROL-PEBBL is a C++, MPI-based parallel code for mixed-integer PDE-constrained optimization (MIPDECO). In these problems we wish to optimize (control, design, etc.) physical systems, which must obey the laws of physics, when some of the decision variables must take integer values. ROL-PEBBL combines a code to efficiently search over integer choices (PEBBL = Parallel Enumeration Branch-and-Bound Library) and a code for efficient nonlinear optimization, including PDE-constrained optimization (ROL = Rapid Optimization Library). In this report, we summarize the design of ROL-PEBBL and initial applications/results. For an artificial source-inversion problem, finding sources of pollution on a grid from sparse samples, ROL-PEBBLs solution for the nest grid gave the best optimization guarantee for any general solver that gives both a solution and a quality guarantee.

More Details

Ultrasonic communication through a metallic barrier: Transmission modeling and crosstalk minimization

IEEE International Ultrasonics Symposium, IUS

Sugino, Christopher; Gerbe, Romain; Reinke, Charles M.; Ruzzene, Massimo; Erturk, Alper; El-Kady, I.

For systems that require complete metallic enclosures (e.g., containment buildings for nuclear reactors), it is impossible to access interior sensors and equipment using standard electromagnetic techniques. A viable way to communicate and supply power through metallic barriers is the use of elastic waves and ultrasonic transducers, introducing several design challenges that must be addressed. The objective of this work is to investigate the use of piezoelectric transducers for both sending and receiving power and data through a metallic barrier using elastic waves at ultrasonic frequencies above 1 MHz. High-fidelity numerical and simplified analytical models are developed for ultrasonic transmission and novel strategies are explored to eliminate crosstalk between channels.

More Details

Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies

Applied Physics Letters

Ghasemi Baboly, M.; Reinke, Charles M.; Griffin, Benjamin G.; El-Kady, I.; Leseman, Z.C.

Two dimensional SiC-air phononic crystals have been modeled, fabricated, and tested with a measured bandgap ranging from 665 to 693 MHz. Snowflake air inclusions on a hexagonal lattice were used for the phononic crystal. By manipulating the phononic crystal lattice and inserting circular inclusions, a waveguide was created at 680 MHz. The combined insertion loss and propagation loss for the waveguide is 8.2 dB, i.e., 39% of the energy is guided due to the high level of the confinement afforded by the phononic crystal. The SiC-air phononic crystals and waveguides were fabricated using a CMOS-compatible process, which allows for seamless integration of these devices into wireless communication systems operating at microwave frequencies.

More Details
Results 1–25 of 123
Results 1–25 of 123