Publications

Results 1–25 of 37

Search results

Jump to search filters

Simple effective conservative treatment of uncertainty from sparse samples of random functions

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part B. Mechanical Engineering

Romero, Vicente J.; Schroeder, Benjamin B.; Dempsey, James F.; Lewis, John R.; Breivik, Nicole L.; Orient, George E.; Antoun, Bonnie R.; Winokur, Justin W.; Glickman, Matthew R.; Red-Horse, John R.

This paper examines the variability of predicted responses when multiple stress-strain curves (reflecting variability from replicate material tests) are propagated through a finite element model of a ductile steel can being slowly crushed. Over 140 response quantities of interest (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity’s behavior varies according to the particular stress-strain curves used for the materials in the model. We desire to estimate response variability when only a few stress-strain curve samples are available from material testing. Propagation of just a few samples will usually result in significantly underestimated response uncertainty relative to propagation of a much larger population that adequately samples the presiding random-function source. A simple classical statistical method, Tolerance Intervals, is tested for effectively treating sparse stress-strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-standard response distributions in the can-crush problem. The results and discussion in this paper support a proposition that the method will apply similarly well for other sparsely sampled random variable or function data, whether from experiments or models. Finally, the simple Tolerance Interval method is also demonstrated to be very economical.

More Details

Evaluation of a simple UQ approach to compensate for sparse stress-strain curve data in solid mechanics applications

19th AIAA Non-Deterministic Approaches Conference, 2017

Romero, Vicente J.; Dempsey, James F.; Schroeder, Benjamin B.; Lewis, John R.; Breivik, Nicole L.; Orient, George E.; Antoun, Bonnie R.; Winokur, Justin W.; Glickman, Matthew R.; Red-Horse, John R.

This paper examines the variability of predicted responses when multiple stress-strain curves (reflecting variability from replicate material tests) are propagated through a transient dynamics finite element model of a ductile steel can being slowly crushed. An elastic-plastic constitutive model is employed in the large-deformation simulations. Over 70 response quantities of interest (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity’s behavior varies according to the particular stress-strain curves used for the materials in the model. The present work assigns the same material to all the can parts: lids, walls, and weld. We desire to estimate response variability due to variability of the input material curves. When only a few stress-strain curve samples are available from material testing, response variance will usually be significantly underestimated. This is undesirable for many engineering purposes. A simple classical statistical method, Tolerance Intervals, is tested for effectively compensating for sparse stress-strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-standard response distributions in the can-crush problem. The results and discussion in this paper, and further studies referenced, support a proposition that the method will apply similarly well for other sparsely sampled random functions.

More Details

Can-crush model and simulations for verifying uncertainty quantification method for sparse stress-strain curve data

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Dempsey, James F.; Romero, Vicente J.; Breivik, Nicole L.; Orient, George E.; Antoun, Bonnie R.; Schroeder, Benjamin B.; Winokur, Justin W.

This work examines the variability of predicted responses when multiple stress-strain curves (reflecting variability from replicate material tests) are propagated through a transient dynamics finite element model of a ductile steel can being slowly crushed. An elastic-plastic constitutive model is employed in the large-deformation simulations. The present work assigns the same material to all the can parts: lids, walls, and weld. Time histories of 18 response quantities of interest (including displacements, stresses, strains, and calculated measures of material damage) at several locations on the can and various points in time are monitored in the simulations. Each response quantity's behavior varies according to the particular stressstrain curves used for the materials in the model. We estimate response variability due to variability of the input material curves. When only a few stress-strain curves are available from material testing, response variance will usually be significantly underestimated. This is undesirable for many engineering purposes. This paper describes the can-crush model and simulations used to evaluate a simple classical statistical method, Tolerance Intervals (TIs), for effectively compensating for sparse stress-strain curve data in the can-crush problem. Using the simulation results presented here, the accuracy and reliability of the TI method are being evaluated on the highly nonlinear inputto- output response mappings and non-standard response distributions in the can-crush UQ problem.

More Details

Analysis of laser weld induced stress in a hermetic seal

Conference Proceedings of the Society for Experimental Mechanics Series

Jamison, Ryan D.; Gorman, Pierrette H.; Rodelas, Jeffrey R.; Maccallum, Danny O.; Neidigk, Matthew N.; Dempsey, James F.

Laser welding of glass-to-metal electrical connectors is a common manufacturing method for creating a hermetically sealed device. The materials in these connectors, in particular the organic glass, are sensitive to thermal induced residual stress and localized heating. An analytical laser weld model is developed that provides simulation and analysis of both thermal and mechanical effects of the welding process. Experimental studies were conducted to measure the temperature at various locations on the connector. The laser weld is modeled using both surface and volumetric heating directed along the weld path to capture the thermal and mechanical response. The weld region is modeled using an elasticplastic weld material model, which allows for compliance before welding and stiffening after the weld cools. Results from a finite element model of the glass-to-metal seal are presented and compared with experimental results. The residual compressive stress in the glass is reduced due to the welding process but hermeticity is maintained.

More Details

UQ and V&V techniques applied to experiments and simulations of heated pipes pressurized to failure

Romero, Vicente J.; Dempsey, James F.; Antoun, Bonnie R.

This report demonstrates versatile and practical model validation and uncertainty quantification techniques applied to the accuracy assessment of a computational model of heated steel pipes pressurized to failure. The Real Space validation methodology segregates aleatory and epistemic uncertainties to form straightforward model validation metrics especially suited for assessing models to be used in the analysis of performance and safety margins. The methodology handles difficulties associated with representing and propagating interval and/or probabilistic uncertainties from multiple correlated and uncorrelated sources in the experiments and simulations including: material variability characterized by non-parametric random functions (discrete temperature dependent stress-strain curves); very limited (sparse) experimental data at the coupon testing level for material characterization and at the pipe-test validation level; boundary condition reconstruction uncertainties from spatially sparse sensor data; normalization of pipe experimental responses for measured input-condition differences among tests and for random and systematic uncertainties in measurement/processing/inference of experimental inputs and outputs; numerical solution uncertainty from model discretization and solver effects.

More Details

Detailed measurements of thread deformation and failure in thin walled aluminum alloy joints

Conference Proceedings of the Society for Experimental Mechanics Series

Antoun, Bonnie R.; Grange, Spencer G.; Wellman, Gerald W.; Dempsey, James F.

This paper describes the development and implementation of the experimental design, apparatus and measurement methods for quantifying the deformation of threads during loading to failure. A linear thread geometry is used to allow direct optical and contacting measurements of key displacements along the loading axis and across the threaded engagement section. Full field optical measurements of thread pairs are collected for post-processing using digital image correlation methods. Thread geometry parameters and material pairings are studied. © The Society for Experimental Mechanics, Inc. 2013.

More Details
Results 1–25 of 37
Results 1–25 of 37