Publications

11 Results
Skip to search filters

CUBIT Geometry and Mesh Generation Toolkit 15.2 User Documentation

Blacker, Ted D.; Owen, Steven J.; Staten, Matthew L.; Quadros, William R.; Hanks, Byron H.; Clark, Brett W.; Meyers, Ray J.; Ernst, Corey E.; Merkley, Karl M.; Morris, Randy M.; McBride, Corey M.; Stimpson, Clinton S.; Plooster, Michael P.; Showman, Sam S.

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies. It is a solidmodeler based preprocessor that meshes volumes and surfaces for finite element analysis.

More Details

Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

Modelling and Simulation in Materials Science and Engineering

Lim, Hojun L.; Abdeljawad, Fadi F.; Owen, Steven J.; Hanks, Byron H.; Foulk, James W.; Battaile, Corbett C.

The mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FE meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.

More Details

CUBIT geometry and mesh generation toolkit 15.1 user documentation

Blacker, Ted D.; Owen, Steven J.; Staten, Matthew L.; Quadros, William R.; Hanks, Byron H.; Clark, Brett W.; Meyers, Ray J.; Ernst, Corey E.; Merkley, Karl M.; Morris, Randy M.; McBride, Corey M.; Stimpson, Clinton S.; Plooster, Michael P.; Showman, Sam S.

CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies. It is a solid-modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping and multi-sweeping, tetrahedral meshing, and various special purpose primitives. CUBIT contains many algorithms for controlling and automating much of the meshing process, such as automatic scheme selection, interval matching, sweep grouping, and also includes state-of-the-art smoothing algorithms.

More Details

Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models

Lim, Hojun L.; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron H.; Battaile, Corbett C.

In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

More Details
11 Results
11 Results