Luk, Ting S.; Mishkat-Ul-Masabih, Saadat M.; Aragon, Andrew A.; Monavarian, Morteza; Feezell, Daniel F.
We demonstrate the first electrically injected nonpolar m-plane GaN-based vertical-cavity surface-emitting lasers (VCSELs) with lattice-matched nanoporous bottom DBRs. Lasing under pulsed operation at room temperature was observed near 409 nm with a linewidth of ∼0.6 nm and a maximum output power of ∼1.5 mW. The VCSELs were linearly polarized and polarization-locked in the a-direction, with a polarization ratio of 0.94. The high polarization ratio and polarization pinning reveal that the optical scattering from the nanoporous DBRs is negligible. A high characteristic temperature of 357 K resulted from the slightly negative offset between the peak gain and cavity mode wavelengths.
In 2017 small-scale drawdowns at the Strategic Petroleum Reserve (SPR) supported oil sales for the Bipartisan Budget Act of 2015 and the 21st Century Cures Act of 2015 as well as exchanges supporting relief efforts for hurricane Harvey. These drawdowns may affect cavern stability and available drawdowns, thus is important to assess the leaching effects on the cavern shape. Cavern shape estimates from the SANSMIC solution mining code suggest the shapes of 28 caverns were altered in 2017 to varying degrees depending on the total volume of water injected, the initial cavern shape and the distance between the hanging string depth and the oil-brine interface depth. A flaring of the cavern floor occurred in 13 caverns, a geomechanically unfavorable outcome that may require operational changes to preserve cavern integrity. Of the three caverns with post-sale sonars, SANSMIC predictions compared favorably to two but underpredicted the third.
A major challenge in gallium nitride (GaN) vertical power devices and other large bandgap materials is the high defect density that compromises the performance, reliability, and yield. Defects are typically nucleated at the heterointerface where there are both lattice and thermal mismatches. Here, we report the selective area growth (SAG) of thick GaN on Si and on the newly available Qromis Substrate Technology™ (QST) substrates that lead to a significant reduction of the defect densities to a level that is nearly comparable to that on native substrates by defect annihilation. We performed a parametric study of the electrical properties of the SAG GaN layers by fabricating and characterizing Schottky barrier diodes for SAG GaN layer thicknesses of 5, 10, 15, and 20 μm for GaN-on-Si, GaN-on-QST, and GaN-on-GaN diodes. While thicker layers led to a significant reduction in defect densities and improvement in the diode forward current characteristics, the GaN-on-QST diodes exhibited nearly similar characteristics to the GaN-on-GaN diodes. Further improvement in the device structure and/or SAG growth for GaN-on-Si is needed to achieve a comparable performance as the defect densities in the GaN-on-Si are comparable to that of GaN-on-QST substrates.
Here, this paper explores key differences of MPI match lists for several important United States Department of Energy (DOE) applications and proxy applications. This understanding is critical in determining the most promising hardware matching design for any given high-speed network. The results of MPI match list studies for the major open-source MPI implementations, MPICH and Open MPI, are presented, and we modify an MPI simulator, LogGOPSim, to provide match list statistics. These results are discussed in the context of several different potential design approaches to MPI matching–capable hardware. The data illustrate the requirements for different hardware designs in terms of performance and memory capacity. Finally, this paper's contributions are the collection and analysis of data to help inform hardware designers of common MPI requirements and highlight the difficulties in determining these requirements by only examining a single MPI implementation.
Harms, Gary A.; Zerkle, Michael L.; Clarity, Justin B.; Heinrichs, David P.
A method is described to test the effect of increased moderation on the 7uPCX critical arrays using the existing assembly hardware. The proposed experiments will allow the exploration of the assembly fuel-to-water ratio out to, and possibly beyond, optimum moderation in the assembly. A significant result reported below is that the total uncertainty in the benchmark keff in some of these experiments is reduced by about a factor of two compared to the uncertainties obtained in the fully-reflected experiments done to date.
The development of fast, highly pixelated photodetectors with single-photon sensitivity has the potential to enable a variety of new radiation detection concepts. Systems that desire to employ these detectors without loss of information demand waveform digitization with high sampling rates. Switched capacitor arrays provide a low-cost, low-power, compact solution to fast readout with high channel density. The Sandia Laboratories Compact Electronics for Modular Acquisition (SCEMA) was developed to meet these demands. A single module employs two domino ring sampling switched capacitor arrays (DRS4) [1] to provide 16 channels of up to 5 GS/s waveform digitization. This paper presents an overview of the board design and function. Calibration procedures for the module are discussed. Finally, temporal resolution tests are presented demonstrating the module's viability as readout for high fidelity temporal measurements of single photons in suitable photodetectors.
Recent advances in nanotechnology have enabled researchers to manipulate small collections of quantum-mechanical objects with unprecedented accuracy. In semiconductor quantum-dot qubits, this manipulation requires controlling the dot orbital energies, the tunnel couplings, and the electron occupations. These properties all depend on the voltages placed on the metallic electrodes that define the device, the positions of which are fixed once the device is fabricated. While there has been much success with small numbers of dots, as the number of dots grows, it will be increasingly useful to control these systems with as few electrode voltage changes as possible. Here, we introduce a protocol, which we call the "compressed optimization of device architectures" (CODA), in order both to efficiently identify sparse sets of voltage changes that control quantum systems and to introduce a metric that can be used to compare device designs. As an example of the former, we apply this method to simulated devices with up to 100 quantum dots and show that CODA automatically tunes devices more efficiently than other common nonlinear optimizers. To demonstrate the latter, we determine the optimal lateral scale for a triple quantum dot, yielding a simulated device that can be tuned with small voltage changes on a limited number of electrodes.
The capability of the Simplified Potential Energy Clock Model (SPEC) to represent the uniaxial compression yield strength evolution under isothermal aging conditions is evaluated for a widely used epoxy thermoset encapsulation material, 828 DGEBA/DEA. A baseline model calibration is used. We note that this calibration did not consider yield strength behavior close to the glass transition temperature (Tg), but in this work, the model is exercised in this temperature range to evaluate the ability to predict changes in material response with aging as equilibrium is approached. Some model alterations were needed to remove negative Prony weights in the thermal and bulk relaxation function (f1), which is chiefly responsible for aging in this analysis, but otherwise, the model was not altered. Model predictions of yield stress evolution are quantitatively different compared with experiments, but the rate of change of yield stress with respect to aging time is in reasonable agreement with respect to experiments for the first 1000 hours of aging. After this aging time, the measured yield stress stops evolving, but the model continues to evolve for several more decades in time. Parametric studies and model alterations are considered to investigate how yield strength evolution predictions are affected by modeling choices. It is clear that the baseline calibration must be re-examined in order to represent the aging data quantitatively.
We introduce a silicon metal-oxide-semiconductor quantum dot architecture based on a single polysilicon gate stack. The elementary structure consists of two enhancement gates separated spatially by a gap, one gate forming a reservoir and the other a quantum dot. We demonstrate that, in three devices based on two different versions of this elementary structure, a wide range of tunnel rates is attainable while maintaining single-electron occupation. A characteristic change in the slope of the charge transitions as a function of the reservoir gate voltage, attributed to screening from charges in the reservoir, is observed in all devices and is expected to play a role in the sizable tuning orthogonality of the split enhancement gate structure. The all-silicon process is expected to minimize strain gradients from electrode thermal mismatch, while the single gate layer should avoid issues related to overlayers (e.g., additional dielectric charge noise) and help improve the yield. Finally, reservoir gate control of the tunnel barrier has implications for initialization, manipulation, and readout schemes in multi-quantum dot architectures.
Stormont, John C.; Taha, Mahmoud R.; Anwar, Ishtiaque; Hatabeigi, Mahya; Chojnicki, Kirsten N.
A number of wells at the Strategic Petroleum Reserve (SPR) have shown sustained, positive pressure (referred to as sustained casing pressure or SCP) in the cemented annulus behind the production casing. To better understand how SCP may develop for SPR conditions, we conducted gas and oil flow tests on cement specimens with flaws including cement fractures and discrete interfaces along a cement-steel contact. Many specimens were tested initially with gas, followed by oil, and finally with gas again to identify how the fluid type may affect the flow through flaws in the well cement. Nitrogen was used as the gas, and silicone oil with properties similar to typical crude oil was used in most tests. One set of measurements were made with crude oil. Composite steel-cement specimen with corroded steel were also tested. For both gas and oil tests, the measured flow test data were used to interpret permeability and, assuming the cubic law for flow between parallel plates, the corresponding hydraulic aperture of the flaw. The hydraulic apertures for the flawed specimens ranged from about 20 to >100 μm, which corresponds to permeabilities of about 10-14 to 10-12 m2, respectively; these hydraulic apertures are consistent with the range of values interpreted from field measurements on leaky wells. Observed differences between the flow of gas and oil were attributed to a number of factors, including non-linear flow of gas, possible blocking of flow paths by solids within the crude oil, two-phase gas and oil flow and the presence of residual oil in the cement flaw. Furthermore, we determined that corroded steel itself is permeable. Using input values consistent with the gas and oil flow measurements, we conducted one-dimensional simulations of gas and oil flow through cemented annulus systems to investigate the role of flaw size and fluid type on the expected response (i.e., pressure build-up) in the annular cement.
Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of massive amounts of data have created a space for massively parallel acceleration where the context for thousands of concurrent threads are resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. The design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. To address the need for a scalable, decentralized GPU model that can model large GPUs, chiplet-based GPUs and multi-node GPUs, this report details the first steps in integrating the open-source, execution driven GPGPU-Sim into the SST framework. The first stage of this project, creates two elements: a kernel scheduler SST element accepts work from SST CPU models and schedules it to an SM-collection element that performs cycle-by-cycle timing using SSTs Mem Hierarchy to model a flexible memory system.
The thermal performance of commercial spent nuclear fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission(NRC). Canistered dry storage cask systems rely on ventilation between the inner canister and the overpack to convect heat away from the canister to the surrounding environment for both horizontal and vertical configurations. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. While several testing programs have been previously conducted, these earlier validation studies did not integrate all the physics or components important in a modern, horizontal dry cask system. The purpose of the investigation described in this test plan is to produce data sets that can be used to benchmark the codes and best practices presently used to determine cladding temperatures and induced cooling air flows in modern horizontal dry storage systems. The horizontal dry cask simulator(HDCS) has been designed to generate this benchmark data and add to the existing knowledgebase. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure(MAWP)rating of 2,400 kPa at400 °C. An existing electrically heated but otherwise prototypic boiling water reactor(BWR), Incoloy-clad test assembly will be deployed inside of a representative storage basket and canister. An insulated sheet metal enclosure will be used to mimic the thermal properties of the concrete vault enclosure used in a modern horizontal storage system. Radial and axial temperature profiles along with induced cooling air flow will be measured for a wide range of decay powers and representative(and higher)cask pressures using various backfills of helium, argon, or air. The single assembly geometry with well-controlled boundary conditions simplifies computational requirements while preserving relevant physics. The proposed test apparatus integrates all the underlying thermal-hydraulics important to defining the performance of a modern horizontal storage system. These include combined-mode heat transfer from the electrically-heated assembly to the canister walls and the primarily natural-convective heat transfer from the canister to the cooling air flow passing through the horizontal vault enclosure. The objective of the HDCS is not to reproduce the performance of a commercial dry storage system for any given set of operational parameters. Rather ,the objective is to capture the dominant physics in a well-characterized test apparatus. The close coupling between the thermal response of the canister system and the resulting induced cooling air flow rate is of particular importance. While incorporating the best available information based on thermal-hydraulic scaling arguments as well as previous vertical testing, this test plan is subject to changes due to improved understanding or from as built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.
Pore structure is an important parameter to quantify the reservoir rock adsorption capability and diffusivity, both of which are fundamental reservoir properties to evaluate the gas production and carbon sequestration potential for coalbed methane (CBM) and shale gas reservoirs. In this study, we applied small-angle neutron scattering (SANS) to characterize the total and accessible pore structures for two coal and two shale samples. We carried out in situ SANS measurements to probe the accessible pore structure differences under argon, deuterated methane (CD 4 ), and CO 2 penetrations. The results show that the total porosity ranges between 0.25 and 5.8% for the four samples. Less than 50% of the total pores are accessible to CD 4 for the two coals, while more than 75% of the pores were found to be accessible for the two shales. This result suggests that organic matter pores tend to be disconnected compared to mineral matter pores. Argon pressurization can induce pore contraction because of the mechanical compression of the solid skeleton in both the coal and shale samples. Hydrostatic compression has a higher effect on the nanopores of coal and shale with a higher accessible porosity. Both methane and CO 2 injection can reduce the accessible nanopore volume due to a combination of mechanical compression, sorption-induced matrix swelling, and adsorbed molecule occupation. CO 2 has higher effects on sorption-induced matrix swelling and pore filling compared to methane for both the coal and shale samples. Gas densification and pore filling could occur at higher pressures and smaller pore sizes. In addition, the compression and adsorption could create nanopores in the San Juan coal and Marcellus shale drilled core but could have an opposite effect in the other samples, namely, the processes could damage the nanopores in the Hazleton coal and Marcellus shale outcrop.
Lithium ion batteries have a well documented tendency to fail energetically under various abuse conditions. These conditions frequently result in decomposition of the electrochemical components within the battery resulting in gas generation and increased internal pressure which can lead to an explosive case rupture. The 18650 format cell incorporates a vent mechanism located within a crimped cap to relieve pressure and mitigate the risk of case rupture. Cell venting, however, introduces additional safety concerns associated with the flow of flammable gases and liquid electrolyte into the environment. Experiments to quantify key parameters are performed to elucidate the external dynamics of battery venting. A first experiment measures the vent burst pressure. Burst vent caps are then tested with a second experimental fixture to measure vent opening area and discharge coefficient during choked-flow venting, which occurs during battery failure. Vent opening area and discharge coefficient are calculated from stagnation temperature, stagnation pressure, and static pressure measurements along with compressible-isentropic flow equations and conservation of mass. Commercially-sourced vent caps are used with repeated tests run to quantify repeatability and variability. Validation experiments confirmed accuracy of opening area and discharge coefficient measurement. Moreover, trials conducted on vent caps from two sources demonstrate the potential for variation between manufacturers.
Fuel cells, batteries, and thermochemical and other energy conversion devices involve the transport of a number of (electro-) chemical species through distinct materials so that they can meet and react at specified multi-material interfaces. Therefore, morphology or arrangement of these different materials can be critical in the performance of an energy conversion device. In this paper, we study a model problem motivated by a solar-driven thermochemical conversion device that splits water into hydrogen and oxygen. We formulate the problem as a system of coupled multi-material reaction-diffusion equations where each species diffuses selectively through a given material and where the reaction occurs at multi-material interfaces. We introduce a phase-field formulation of the optimal design problem and numerically study selected examples.
Previous studies have demonstrated the benefits of the log-conformation formulation to model viscoelastic fluids; it increases stability at high Weissenberg numbers and ensures that the conformation tensor remains positive-definite. Many studies have applied the log-conformation tensor formulation to benchmark cases; however, relatively few studies investigate using the formulation on more complex flows. In this paper, we extend the log-conformation formulation to the manufacturing-relevant flow of blade coating. We first verify the log-conformation formulation on the benchmark problem of flow past a cylinder using the finite element method, and then apply it to the blade-coating process, in which a viscoelastic fluid entrained by a moving substrate passes under a blade at a constant web speed. We investigate various rheological effects and the resulting film thickness for the blade-coating problem, and compare the results from the log-conformation formulation to those of the original stress formulation. We show that the log-conformation formulation agrees well with other established methods, and also increases the maximum achievable web speed in the blade-coating problem.
We performed microsecond-long, atomistic molecular dynamics simulations on a series of precise poly(ethylene-co-acrylic acid) ionomers neutralized with lithium, with three different spacer lengths between acid groups on the ionomers and at two temperatures. Ionic aggregates form in these systems with a variety of shapes ranging from isolated aggregates to percolated aggregates. At the lower temperature of 423 K, the ionic aggregate morphologies do not reach a steady-state distribution over the course of the simulations. At the higher temperature of 600 K, the aggregates are sufficiently mobile that they rearrange and reach steady state after hundreds of nanoseconds. For systems that are 100% neutralized with lithium, the ions form percolated aggregates that span the simulation box in three directions, for all three spacer lengths (9, 15, and 21). In the partially neutralized systems, the morphology includes lithium ion aggregates that may also include some unneutralized acid groups, along with a coexisting population of acid group aggregates that form through hydrogen bonding. In the lithium ion aggregates, unneutralized acid groups tend to be found on the ends or sides of the aggregates.
The thickening behavior of aluminum scandium nitride (Al0.88Sc0.12N) films grown on Si(111) substrates has been investigated experimentally using X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy, and residual stress measurement. Al0.88Sc0.12N films were grown with thicknesses spanning 14 nm to 1.1 um. TEM analysis shows that the argon sputter etch used to remove the native oxide prior to deposition produced an amorphous, oxygen-rich surface, preventing epitaxial growth. XRD analysis of the films show that the A1ScN(002) orientation improves as the films thicken and the XRD A1ScN(002) rocking curve full width half maximum decreases to 1.34 q for the 1.1 pm thick film. XRD analysis shows that the unit cell is expanded in both the a- and c-axes by Sc doping; the a-axis lattice parameter was measured to be 3.172 ± 0.007 A and the c-axis lattice parameter was measured to be 5.000 ± 0.001 A, representing 1.96% and 0.44% expansions over aluminum nitride lattice parameters, respectively. The grain size and roughness increase as the film thickness increases. A stress gradient forms through the film; the residual stress grows more tensile as the film thickens, from -1.24 GPa to +8.5MPa.
To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g., ∼0.2 to >0.70) when confined to a structurally rigid polymer host whose pores are on a similar length scale (0.5-2 nm) as the Debye screening length in the electrolyte, which results in a diffuse electrolyte double layer at the polymer-electrolyte interface that retains counterions and reject co-ions from the electrolyte due to their larger size. Lithium anodes coated with ∼1 μm thick overlayers of the polymer host exhibit both a low area-specific resistance and clear dendrite-suppressing character, as evident from their performance in Li-Li and Li-Cu cells as well as in post-mortem analysis of the anode's morphology after cycling. High areal capacity Li-S cells (4.9 mg cm -2 8.2 mAh cm -2 ) implementing these high transference number polymer-hosted liquid electrolytes were remarkably stable, considering ∼24 μm of lithium was electroreversibly deposited in each cycle at a C-rate of 0.2. We further identified a scalable manufacturing path for these polymer-coated lithium electrodes, which are drop-in components for lithium metal battery manufacturing.
The degradation of poly[dimethyl siloxane] (PDMS) fluids at metal surfaces can produce insulative PDMS films (also known as SiCO films) that lead to high contact resistance events impacting the performance of electrical contacts in PDMS fluid-filled environmental sensing devices(ESDs). To determine the extent of SiCO film formation on metal contact surfaces due to different exposure and aging conditions it is necessary to develop new characterization methods that allow rapid and non-destructive measurement of the location, thickness and quality of the SiCO degradation films.
This document is a summary of the mathematical models that are used in the DARPA TRADES project for the solid rocket motor design challenge. It is hoped that this brief description of these models will be of use to those that are working on the project.
Sandia Total Health plan premiums are increasing between $\$2$ and $\$22$ depending on health plan and tier level. Sandia Total Health will cover Applied Behavioral Analysis (ABA) treatment services for Autism Spectrum Disorder (ASD).
Multiple computational and experimental techniques are used to understand the nanoscale morphology and water/proton transport properties in a series of sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes over a wide range of temperature, hydration, and sulfonation conditions. New synthetic methods allow us to sulfonate the SDAPP membranes to much higher ion exchange capacity levels than has been previously possible. Nanoscale phase separation between the hydrophobic polymer backbone and the hydrophilic water/sulfonic acid groups was observed for all membranes studied. We find good agreement between structure factors calculated from atomistic molecular dynamics (MD) simulations and those measured by X-ray scattering. With increasing hydration, the scattering ionomer peak in SDAPP is found to decrease in intensity. This intensity decrease is shown to be due to a reduction of scattering contrast between the water and polymer and is not indicative of any loss of nanoscale phase separation. Both MD simulations and density functional theory (DFT) calculations show that as hydration levels are increased, the nanostructure morphology in SDAPP evolves from isolated ionic domains to fully percolated water networks containing progressively weaker hydrogen bond strengths. The conductivity of the membranes is measured by electrical impedance spectroscopy and the equivalent proton conductivity calculated from pulsed-field-gradient (PFG) NMR diffusometry measurements of the hydration waters. Comparison of the measured and calculated conductivity reveals that in SDAPP the proton conduction mechanism evolves from being dominated by vehicular transport at low hydration and sulfonation levels to including a significant contribution from the Grötthuss mechanism (also known as structural diffusion) at higher hydration and sulfonation levels. The observed increase in conductivity reflects the impact that changing hydration and sulfonation have on the morphology and hydrogen bond network and ultimately on the membrane performance.
The core composition of gypsum wallboard is calcium sulfate dihydrate (CaSO 4 ·2H 2 O) with varying impurities, additives, or both. This study compares two commercially calcined sources of hemihydrate (CaSO 4 ·½H 2 O) from a natural source and a synthetic by-product of flue gas desulfurization and neutralization to reagent grade hemihydrate. Two common ingredients, borax and kaolin, are mixed into a slurry with distilled water. The analysis supports the hypothesis that minor components in the cast have an effect on the high temperature performance of gypsum casts. The analysis is enhanced when the differential thermal analysis, thermogravimetric analysis, and dilatometry data are combined to study the changes in density versus heat flow. Specifically, the thermal performance is affected by (1) the impurities found in hemihydrate sources; (2) during the fluidization phase, the reaction of borax with free Ca ++ ions to form new borate salts that melt at lower temperatures; and (3) the intercalation of these and other ions with kaolin, providing thermal stability by reducing the formation of thermally active salts.
The goal of this project was to qualitatively evaluate the efficacy of using plasma cleaning to remove PDMS from vacuum systems. Silicon containing compounds are notorious for interfering with vacuum system techniques such as x-ray photoelectron spectroscopy (XPS), Auger Electron Spectroscopy (AES) and Secondary lon Mass Spectrometry (SIMS). Finding a way to remotely and rapidly remove contaminants from a system saves time and money for analysts using vacuum analytical techniques.
The original objective of this Truman LDRD project was to explore the use of novel wave-particle plasma interactions in inertial confinement fusion (ICF) research. However, the emergence of many exciting developments in the national ICF program, including the Sandia- led "MagLIF" effort, led to extensive reformulation of the LDRD objectives. In the spirit of the original proposal, the research purview was broadened to encompass all "kinetic" (i.e., non-hydrodynamic) phenomena relevant to ICF. Significant research accomplishments include: developing theory and modeling strategies describing nonlocal ion losses and fusion reactivity reduction in unique burning plasma assemblies, including magnetized and spatially-deformed plasmas; developing numerical and conceptual tools describing the relationship between fuel magnetization and nuclear reaction histories in magneto-inertial fusion and applying these tools to groundbreaking MagLIF experiments on Sandia's Z Facility; and developing detailed analytic theories of the stability of imploding targets and applying them to uncover increasingly stable platforms for magnetically-driven implosions.
The U.S. Strategic Petroleum Reserve (SPR) is a stockpile of emergency crude oil to be tapped into if a disruption in the nation's oil supply occurs. The SPR comprises of four underground salt dome sites. Subsidence surveys have been conducted either annually or biennially at all four sites over the life of the program. Monitoring of surface behavior is a first line defense to detecting possible subsurface cavern integrity issues. Over the life of the Bryan Mound site, subsidence rates over abandoned Cavern 3 have continuously been the highest at the site. In an effort to try and understand the subsurface dynamics, specifically over Bryan Mound Cavern 3, interferometric synthetic aperture radar (InSAR) data has been collected since October 2015, which allows for the acquisition of a greater density of data over a higher frequency providing improved spatiotemporal resolution. Currently, satellite images are acquired from two orbit geometries allowing for a 2-D analysis, which provides both the true vertical and east-west horizontal displacement rates. This report serves as an addendum to the 2017 report, Bryan Mound InSAR Analysis, U.S. Strategic Petroleum Reserve, SAND 2017-6679. The latest data display an improvement in point density and precision, providing a higher confidence in the results. The results confirm, as seen in the previous analysis, that the fastest surface deformation is occurring over the southwest region of the site, where abandoned Cavern 3 is located. In addition, the horizontal displacement analyses suggest a geologic feature, such as a fault, may be contributing to the higher rates observed over Cavern 3. A loss in cavern integrity would significantly impact the site surface infrastructure.
Digital inline holography has been proven to provide three-dimensional droplet position, size, and velocity distributions with a single camera. These data are crucial for understanding multiphase flows. In this work, we examine the performance of this diagnostic in the limit of very small particles, on the order of a pixel in diameter and smaller, and propose a postprocessing method to improve them: Lanczos interpolation. The Lanczos interpolation kernel is the digital implementation of the Whittaker sinc filter and strikes a compromise between maintaining the spatial frequency ceiling of the original digital image and computational cost of the interpolation. Without Lanczos interpolation, or supersampling, the ultimate detectable particle size floor is on the order of four pixel widths. We show in this work that this limit can be reduced by 50% or more with supersampling, depending upon the desired diameter accuracy, and examine the effect of supersampling on the resulting accuracy of the extracted size and position of spherical particles. Extending this resolution limit increases the overall detection efficiency of the diagnostic. Since this increases the spatial dynamic range of the diagnostic, it can also allow a larger field of view to be captured with the same particle size floor.
Here in this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions.Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility.A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.
We present an analytic band-to-trap tunneling model based on the open boundary scattering approach. The new model has three major advantages: (i) It includes not only the well-known electric field effect, but more importantly, the effect of heterojunction band offset. This feature allows us to simulate both electric field and band offset enhanced carrier recombination near a heterojunction in heterostructures. (ii) Its analytic form enables straightforward implementation into a parallel Technology Computer Aided Design device and circuit simulators. (iii) The developed method can be used for any potentials which can be approximated to a good degree such that the Schrödinger equation with open boundary conditions results in piecewise analytic wave functions. Simulation results of an InGaP/GaAs heterojunction bipolar transistor (HBT) reveal that the proposed model predicts significantly increased base currents, because the tunneling of holes in the base to traps in the emitter is greatly enhanced by the emitter-base band offset. This finding, which is not captured by existing band-to-trap tunneling models, is consistent with the experimental observation for an InGaP/GaAs HBT after neutron irradiation.
Since the attacks carried out against the United States on September 11, 2001, which involved the commandeering of commercial aircraft, interest has increased in performing trajectory analysis of vehicle types not constrained by roadways or railways, i.e., aircraft and watercraft. Anomalous trajectories need to be automatically identified along with other trajectories of interest to flag them for further investigation. There is also interest in analyzing trajectories without a focus on anomaly detection. Various approaches to analyzing these trajectories have been undertaken with useful results to date. In this research, we seek to augment trajectory analysis by carrying out analysis of the trajectory curvature along with other parameters, including distance and total deflection (change in direction). At each point triplet in the ordered sequence of points, these parameters are computed. Adjacent point triplets with similar values are grouped together to form a higher level of semantic categorization. These categorizations are then analyzed to form a yet higher level of categorization which has more specific semantic meaning. This top level of categorization is then summarized for all trajectories under study, allowing for fast identification of trajectories with various semantic characteristics.
The discovery of the RNA-guided DNA nuclease CRISPR-Cas9 has enabled the targeted editing of genomes from diverse organisms, but the permanent and inheritable nature of genome modification also poses immense risks. The potential for accidental exposure, malicious use, or undesirable persistence of Cas9 therapeutics and off-target genome effects highlight the need for detection assays. Here we report a centrifugal microfluidic platform for the measurement of both Cas9 protein levels and nuclease activity. Because Cas9 from many bacterial species have been adapted for biotechnology applications, we developed the capability to detect Cas9 from the widely-used S. pyogenes, as well as S. aureus, N. meningitidis, and S. thermophilus using commercially-available antibodies. Further, we show that the phage-derived anti-CRISPR protein AcrIIC1, which binds to Cas9 from several species, can be used as a capture reagent to broaden the species range of detection. As genome modification generally requires Cas9 nuclease activity, a fluorescence-based sedimentation nuclease assay was also incorporated to allow the sensitive and simultaneous measurement of both Cas9 protein and activity in a single biological sample.
In situ visualization, i.e., visualizing simulation data as it is generated, is an emerging processing paradigm in response to trends in the area of high-performance computing. This paradigm holds great promise in its ability to access increased spatio-temporal resolution and leverage extensive computational power. However, the paradigm is also widely viewed as limiting when it comes to exploration-oriented use cases and further will require visualization systems to become more and more complicated and constrained. Additionally, there are many open research topics within situ visualization. The Dagstuhl seminar 18271 "In Situ Visualization for Computational Science" brought together researchers and practitioners from three communities (computational science, high-performance computing, and scientific visualization) to share interesting findings, to identify lines of open research, and to determine a medium-term research agenda that addresses the most pressing problems. This report summarizes the outcomes and findings of the seminar.
In the California lndustrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous. For annual NALs, an exceedance occurs when the average of all analytical results from all samples taken at a facility during a reporting year for a given parameter exceeds an annual NAL value listed in Table 2 of the General Permit. For instantaneous maximum NALs, an exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneous maximum NAL value (for TSS and O&G), or are outside of the instantaneous maximum NAL range (for pH) listed in Table 2.
Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH 4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H 2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.
Model error estimation remains one of the key challenges in uncertainty quantification and predictive science. For computational models of complex physical systems, model error, also known as structural error or model inadequacy, is often the largest contributor to the overall predictive uncertainty. This work builds on a recently developed framework of embedded, internal model correction, in order to represent and quantify structural errors, together with model parameters,within a Bayesian inference context. We focus specifically on a Polynomial Chaos representation with additive modification of existing model parameters, enabling a non-intrusive procedure for efficient approximate likelihood construction, model error estimation, and disambiguation of model and data errors’ contributions to predictive uncertainty. The framework is demonstrated on several synthetic examples, as well as on a chemical ignition problem.
Taatjes, Craig A.; Khan, M.A.H.; Eskola, Arkke J.; Percival, Carl J.; Osborn, David L.; Wallington, Timothy J.; Shallcross, Dudley E.
The reaction of perfluorooctanoic acid with the smallest carbonyl oxide Criegee intermediate, CH 2 OO, has been measured and is very rapid, with a rate coefficient of (4.9 ± 0.8) × 10 -10 cm 3 s -1 , similar to that for reactions of Criegee intermediates with other organic acids. Evidence is shown for the formation of hydroperoxymethyl perfluorooctanoate as a product. With such a large rate coefficient, reaction with Criegee intermediates can be a substantial contributor to atmospheric removal of perfluorocarboxylic acids. However, the atmospheric fates of the ester product largely regenerate the initial acid reactant. Wet deposition regenerates the perfluorocarboxylic acid via condensed-phase hydrolysis. Gas-phase reaction with OH is expected principally to result in formation of the acid anhydride, which also hydrolyzes to regenerate the acid, although a minor channel could lead to destruction of the perfluorinated backbone.
Large-scale quantum systems with controllable interactions are important for understanding complex phenomena in nature, and are the basis for advanced quantum technologies. Realizing a controllable platform for controlling, understanding, and ultimately harnessing the entanglement is an outstanding challenge in quantum science. This project demonstrated reconfigurable arrays of individually-trapped ultracold atoms, thus realizing a platform that could demonstrate large-scale quantum entanglement with the addition of strong inter-atomic interactions. Arrays of more than 50 trap sites were formed via digital holography and a high-numerical aperture imaging system that featured in-situ trap diagnostics and single-atom imaging resolution. We further discovered a new implementation of a controlled-phase gate that utilized coherent excitation to Rydberg states. This method will enable robust entanglement protocols in many-atom systems such as the one developed here.
Here, this work proposes a machine-learning framework for constructing statistical models of errors incurred by approximate solutions to parameterized systems of nonlinear equations. These approximate solutions may arise from early termination of an iterative method, a lower-fidelity model, or a projection-based reduced-order model, for example. The proposed statistical model comprises the sum of a deterministic regression-function model and a stochastic noise model. The method constructs the regression-function model by applying regression techniques from machine learning (e.g., support vector regression, artificial neural networks) to map features (i.e., error indicators such as sampled elements of the residual) to a prediction of the approximate-solution error. The method constructs the noise model as a mean-zero Gaussian random variable whose variance is computed as the sample variance of the approximate-solution error on a test set; this variance can be interpreted as the epistemic uncertainty introduced by the approximate solution. This work considers a wide range of feature-engineering methods, data-set-construction techniques, and regression techniques that aim to ensure that (1) the features are cheaply computable, (2) the noise model exhibits low variance (i.e., low epistemic uncertainty introduced), and (3) the regression model generalizes to independent test data. Finally, numerical experiments performed on several computational-mechanics problems and types of approximate solutions demonstrate the ability of the method to generate statistical models of the error that satisfy these criteria and significantly outperform more commonly adopted approaches for error modeling.
We demonstrate the use of custom high electron mobility transistors (HEMTs) fabricated in GaAs/AlGaAs heterostructures to amplify current from quantum dot devices. The amplifier circuit is located adjacent to the quantum dot device, at sub-Kelvin temperatures, in order to reduce the impact of cable capacitance and environmental noise. Using this circuit, we show a current gain of 380 for 0.56 μW of power dissipation, with a bandwidth of 2.7 MHz and current noise referred to the input of 24 fA/Hz 1/2 for frequencies of 0.1-1 MHz. The power consumption required for similar gain is reduced by more than a factor of 20 compared to a previous demonstration using a commercial off-the-shelf HEMT. We also demonstrate integration of a HEMT amplifier circuit on-chip with a quantum dot device, which has the potential to reduce parasitics and should allow for more complex circuits with reduced footprints.
As part of the Source Physics Experiment (SPE) Phase I shallow chemical detonation series, multiple surface and borehole active-source seismic campaigns were executed to perform high-resolution imaging of seismic velocity changes in the granitic substrate. Cross-correlation data processing methods were implemented to efficiently and robustly perform semi-automated change detection of first-arrival times between campaigns. The change detection algorithm updates the arrival times, and consequently the velocity model, of each campaign. The resulting tomographic imagery reveals the evolution of the subsurface velocity structure as the detonations progressed.
A series of compaction experiments was conducted to evaluate the mechanical, reactive, and deflagration-to-detonation transition behavior in Alliant Bullseye powder. Using a novel application of photonic Doppler velocimetry and light fibers, the experiments measured both compaction and combustion waves in porous beds of Bullseye subjected to impact by gun-driven pistons. Relationships between initial piston velocity and transition distance are shown. Comparison is made between the Bullseye response and that found in classic Type I DDT.
With low-cost and simple processing, organic electrochromic polymers have attracted considerable attention as a promising material platform for flexible and low-energy-consuming optoelectronic devices. However, typical electrochromic polymers can only be switched from natural-colored to oxidized-transparent states. As a result, the complexity of combining several distinct polymers to achieve a full-color gamut has significantly limited the niche applications of electrochromic polymers. Here in this paper we report an electrochromic polymer based on 4,7-di((3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine-3-yl)-3,4-ethylenedioxythiophene) (PEP), which exhibits fast full-color reversible tuning capability and good stability. Furthermore, a red-green-blue flexible electrochromic device just based on poly(PEP) was fabricated, which offers an effective approach to dynamically manipulate color and enables a variety of optoelectronic applications.
A wave energy converter must be designed to both maximize power production and to ensure survivability, which requires the prediction of future sea states. It follows that precision in the prediction of those sea states should be important in determining a final WEC design. One common method used to estimate extreme conditions employs environmental contours of extreme conditions. This report compares five environmental contour methods and their repercussions on the response analysis of Reference Model 3 (RM3). The most extreme power take-off (PTO) force is predicted for the RM3 via each contour and compared to identify the potential difference in WEC response due to contour selection. The analysis provides insight into the relative performance of each of the contour methods and demonstrates the importance of an environmental contour in predicting extreme response. Ideally, over-predictions should be avoided, as they can add to device cost. At the same time, any "exceedances," that is to say sea states that exceed predictions of the contour, should be avoided so that the device does not fail. For the extreme PTO force response studied here, relatively little sensitivity to the contour method is shown due to the collocation of the device's resonance with a region of agreement between the contours. However, looking at the level of observed exceedances for each contour may still give a higher level of confidence to some methods.
We outline a method using gradient flow independent component analysis (ICA) to separate signals comprising the coda in a topographically complex setting.We also identify the sources of scattered signals by tracking signal backazimuths over time. The gradient flow ICA method is shown to effectively separate signals in the acoustic coda. The method correctly identifies the backazimuth of the first arrival from two 800 kg TNT equivalent explosions as well as subsequent signals scattered by the surrounding topography. Circular statistics is used to analyse the variance, mean and uniformity of calculated backazimuths. These results have strong implications for understanding the acoustic wavefield by identifying scatterers and inverting for atmospheric conditions.
Ceramic fiber insulation materials are used in numerous applications (e.g. aerospace, fire protection, and military) for their stability and performance in extreme environments. However, the thermal properties of these materials have not been thoroughly characterized for many of the conditions that they will be exposed to, such as high temperatures, pressures, and alternate gaseous atmospheres. The resulting uncertainty in the material properties can complicate the design of systems using these materials. In this study, the thermal conductivity of two ceramic fiber insulations, Fiberfrax T-30LR laminate and 970-H paper, was measured as a function of atmospheric temperature and compression in an air environment using the transient plane source technique. Furthermore, a model is introduced to account for changes in thermal conductivity with temperature, compression, and ambient gas. The model was tuned to the collected experimental data and results are compared. The tuned model is also compared to published data sets taken in argon, helium, and hydrogen environments and agreement is discussed.
The ability to print three-dimensional objects was first developed in the 1980s and was originally strictly limited to polymeric materials. Through most of the intervening years, the approach has been thought of as a rapid prototyping method. This allowed low volume, high fidelity structures to be quickly fabricated to test things like fit and finish. However, more recently the term additive manufacturing has entered usage to represent the same methods and implies that the field is transitioning to creating finished parts. When we begin to think about these techniques as a real manufacturing approach, then the materials properties achieved during manufacture become much more important. This is true for all materials, as additive manufacturing has grown to encompass structures formed from metals and ceramics, however the bulk of work remains centered on polymers.
Because the voltage is difficult to measure in a magnetically insulated transmission line (MITL), the measurement of the currents flowing in the cathode and anode is often used with MITL theory to estimate the voltage in a given experiment. However, this estimate contains a space charge correction term whose magnitude depends on what is referred to as the g factor that describes the distribution of charge and current in the electron flow layer in the MITL. Typically, g is on the order of unity, but the accuracy of the voltage estimate depends on its actual value. While the space charge correction term is small when the MITL flow is strongly insulated, it is particularly important near self-limited MITL flow. System parameters that affect the distribution of electron flow are studied here at self-limited flow in order to illustrate this matter and develop a methodology to improve the voltage determination.
Microstructures and mechanical properties are evaluated in austenitic stainless steel structures fabricated by directed energy deposition (DED) considering the effects of applied loading orientation, build geometry, and distance from the deposition baseplate. Locations within an as-deposited build with different thermomechanical history display different yield strength, while those locations with similar history have approximately the same yield strength, regardless of test specimen orientation. Thermal expansion of deposited material near the baseplate is inhibited by the mechanical constraint imposed by the baseplate, promoting plastic deformation and producing a high density of dislocations. Concurrently, high initial cooling rates decrease away from the baseplate as the build is heated, causing an increased spacing of cellular solidification features. An analysis of strengthening mechanisms quantitatively established for the first time the important strengthening contribution of high dislocation densities in the materials (166–191 MPa) to yield strength that ranged from 438 to 553 MPa in the present DED fabricated structures. A newly adopted mechanistic relationship for microsegregation strengthening from the literature indicated an additional important contribution to strengthening (123–135 MPa) due to the cellular solidification features. These findings are corroborated by the measured evolution of microstructure and hardness caused by annealing the DED material. These results suggest that the mechanical properties of deposited austenitic stainless steels can be influenced by controlling thermomechanical history during the manufacturing process to alter the character of compositional microsegregation and the amount of induced plastic deformation.
We have developed a pulsed optically pumped magnetometer (OPM) array for detecting magnetic field maps originated from an arbitrary current distribution. The presented magnetic source imaging (MSI) system features 24-OPM channels has a data rate of 500 S/s, a sensitivity of 0.8\mathrm {pT/}\sqrt {\mathrm {Hz}} , and a dynamic range of 72 dB. We have employed our pulsed-OPM MSI system for measuring the magnetic field map of a test coil structure. The coils are moved across the array in an indexed fashion to measure the magnetic field over an area larger than the array. The captured magnetic field maps show excellent agreement with the simulation results. Assuming a 2-D current distribution, we have solved the inverse problem using the measured magnetic field maps, and the reconstructed current distribution image is compared with that of the simulation.
Laky, Daniel; Xu, Shu; Rodriguez, Jose S.; Vaidyaraman, Shankar; Munoz, Salvador G.; Laird, Carl D.
To increase manufacturing flexibility and system understanding in pharmaceutical development, the FDA launched the quality by design (QbD) initiative. Within QbD, the design space is the multidimensional region (of the input variables and process parameters) where product quality is assured. Given the high cost of extensive experimentation, there is a need for computational methods to estimate the probabilistic design space that considers interactions between critical process parameters and critical quality attributes, as well as model uncertainty. In this paper we propose two algorithms that extend the flexibility test and flexibility index formulations to replace simulation-based analysis and identify the probabilistic design space more efficiently. The effectiveness and computational efficiency of these approaches is shown on a small example and an industrial case study.
This acceptable knowledge(AK)Summary Report has been prepared for the Central Characterization Program (CCP) for remote-handled (RH) transuranic (TRU) waste generated and managed by Sandia National Laboratories/New Mexico (SNL/NM) in Albuquerque, New Mexico. The waste described in this report was predominately generated in the SNL/NM Hot Cell Facility (HCF) during the removal and packaging of experimental material and decontamination operations in Building 6580 at Technical Area (TA)-V.
We invert far-field infrasound data for the equivalent seismoacoustic timedomain moment tensor to assess the effects of variable atmospheric models and source phenomena. The infrasound data were produced by a series of underground chemical explosions that were conducted during the Source Physics Experiment (SPE), which was originally designed to study seismoacoustic signal phenomena. The first goal of this work is to investigate the sensitivity of the inversion to the variability of the estimated atmospheric model. The second goal is to determine the relative contribution of two presumed source mechanisms to the observed infrasonic wavefield. Rather than using actual atmospheric observations to estimate the necessary atmospheric Green’s functions, we build a series of atmospheric models that rely on publicly available, regional-scale atmospheric observations. The atmospheric observations are summarized and interpolated onto a 3D grid to produce a model of sound speed at the time of the experiment. For each of four SPE acoustic datasets that we invert, we produced a suite of three atmospheric models for each chemical explosion event, based on 10 yrs of meteorological data: an average model, which averages the atmospheric conditions for 10 yrs prior to each SPE event, as well as two extrema models. To parameterize the inversion, we assume that the source of infrasonic energy results from the linear combination of explosion-induced surface spall and linear seismic-to-elastic mode conversion at the Earth’s free surface. We find that the inversion yields relatively repeatable results for the estimated spall source. Conversely, the estimated isotropic explosion source is highly variable. This suggests that 1) the majority of the observed acoustic energy is produced by the spall and/or 2) our modeling of the elastic energy, and the subsequent conversion to acoustic energy, is too simplistic.
Crude oil stored at the U.S. Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the West Hackberry SPR site from 2014-2018. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry.
Recently developed Distributed Energy Resource (DER) interoperability standards include communication and cyber security requirements. In 2018, the US national interconnection standard, IEEE 1547, was revised to require DER to include a Sun Spec Modbus, IEEE 2030.5 (Smart Energy Profile, SEP 2.0), or IEEE 1815 (DNP3) communication interface but does not include any normative overarching cybersecurity requirements. IEEE 2030.5 and associated implementation requirements for California, known as the California Smart Inverter Profile (CSIP), prescribe the greatest security features - including encryption, authentication, and key management requirements. Sun Spec Modbus and IEEE 1815 security requirements are not as comprehensive, leading to implementation questions throughout the industry. Further, while the security features in IEEE 2030.5 are commonly used in computing platforms, there are still questions of how well the technologies will scale in highly-distributed, computationally-limited inverter environments. In this paper, (a) the elements of IEEE 2030.5 encryption, authentication, and key management guidelines are analyzed, (b) potential scalability gaps are identified, and (c) alternative technologies are explored for possible inclusion in DER interoperability or cyber security standards.
An increasing number of public utility commissions are adopting Distributed Energy Resource (DER) interconnection standards which require photovoltaic (PV) inverters, energy storage systems, and other DER to include interoperable grid-support functionality. The recently updated national standard, IEEE 1547-2018, requires all DER to include a Sun Spec Modbus, IEEE 2030.5, or IEEE 1815 communication interface in order to provide local and bulk power system services. Those communication protocols and associated information models will ensure system interoperability for PV and storage systems, but these new utility-to-DER communication networks must be deployed with sufficient cybersecurity to protect the U.S. power system and other critical infrastructure reliant on dependable power. Unlike bulk generators, DER are commonly connected to grid operators via public internet channels. These DER networks are exposed to a large attack surface that may leverage sophisticated techniques and infrastructure developed on IT systems, including remote exploits and distributed attacks. Although DER make up a growing portion of the national generation mix, they have limited processing capabilities and do not typically support modern security features such as encryption or authentication. In this work, Sandia National Laboratories constructed simulated DER communication net- works with a range of security features in order to study the security posture of different communication approaches. The experimental test environment was created in a Sandia-developed co-simulation platform, called SCEPTRE, which emulated Sun Spec-compliant DER equipment, the utility DER management system, communication network, and distribution power system. Adversary-based assessments were conducted and a quantitative scoring criteria was applied to evaluate the resilience of various architectures against cyber attacks and to measure the systemic impact during such attacks. The team found that network segmentation, encryption, and moving target defense improved the security of these networks and would be recommended for utility, aggregator, and local DER networks.
This is a review of existing microgrid design tool capabilities, such as the Microgrid Design Tool (MDT), LANL PNNL NRECA Optimal Resilience Model (LPNORM), Distributed Energy Resource-Customer Adoption Model (DER-CAM), Renewable Energy Optimization (REopt), and the Hybrid Optimization Model for Multiple Energy Resources (HOMER). Additionally, other simulation and analysis tools which may provide fundamental support will be examined. These will include GridLAB-DTM, OpenDSS, and the hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS). Their applicability to networked microgrid operations will be evaluated, and strengths and gaps of existing tools will be identified. This review will help to determine which elements of the proposed optimal design and operations (OD&D) tool should be formulated from first principles, and which elements should be integrated from past DOE investments.
In November 2016, the High-Energy Radiation Megavolt Electron Source (HERIVIES)-III gamma simulator was used in a series of physics experiments. As part of the environmental characterization, six Spherical Compton Diodes (SCDs) were fielded in order to measure the dose rate at various locations. This report documents the locations, calibration, compensation, and analysis of these sensors. Several short studies are conducted of the SCD signals examining their change with respect to distance, comparison to other sensors and historical data, evaluation of the log-derivative, and signal behavior with a partially obscured converter. Recommendations for future work includes study and extension of SCD bandwidth, characterization of the HERMES-III output spectrum variability, and study of sensor signals with the courtyard shielded from the top of the Magnetically Insulated Transmission Line (MITL).
Neutron dosimetry monitors should be used during all irradiations in the Annular Core Research Reactor. This report provides the recommended conversion factors that should be used to translate the monitor dosimeter read-outs into the damage metrics that are typically used by experimenters to assess the results of their experiment. These conversion factors are based upon the use of the latest least-squares adjusted neutron spectrum determination to describe the Sandia National Laboratories reference neutron fields and the latest International Atomic Energy Agency recommended dosimetry cross sections to capture the response of the dosimeter. The resulting conversion factors are built into the dosimetry results routinely provided by the Radiation Metrology Laboratory.
This paper evaluates the on-sun performance of a 1 MW falling particle receiver. Two particle receiver designs were investigated: obstructed flow particle receiver versus free-falling particle receiver. The intent of the tests was to investigate the impact of particle mass flow rate, irradiance, and particle temperature on the particle temperature rise and thermal efficiency of the receiver for each design. Results indicate that the obstructed flow design increased the residence time of the particles in the concentrated flux, thereby increasing the particle temperature and thermal efficiency for a given mass flow rate. The obstructions, a staggered array of chevron-shaped mesh structures, also provided more stability to the falling particles, which were prone to instabilities caused by convective currents in the free-fall design. Challenges encountered during the tests included nonuniform mass flow rates, wind impacts, and oxidation/deterioration of the mesh structures. Alternative materials, designs, and methods are presented to overcome these challenges.
Heath, Jason; Moodie, Nathan; Ampomah, William; Jia, Wei; Mcpherson, Brian
Among the most critical factors for geological CO2 storage site screening, selection, and operation is effective simulations of multiphase flow and transport. Relative permeability is probably the greatest source of potential uncertainty in multiphase flow simulation, second only to intrinsic permeability heterogeneity. The specific relative permeability relationship assigned greatly impacts forecasts of CO2 trapping mechanisms, phase behavior, and long-term plume movement. A primary goal of this study is to evaluate the impacts and implications of different methods of assigning relative permeability relationships for CO2-EOR model forecasts. Most simulation studies published in the literature base selection of relative permeability functions on the geologic formation or rock type alone. In this study, we initially implemented reservoir model grids with previously-identified hydrostratigraphic units based on porosity and permeability relationship of the Morrow ‘B’ Sandstone, then assigned relative permeability functions for those hydrostratigraphic units. Specific, constrained relative permeability relationships were created and assigned to each hydrostratigraphic unit using petrophysical data and Mercury Intrusion Capillary Pressure (MICP) measurements, from core samples of each hydrostratigraphic unit. Results of forward simulations with the newly-calibrated models will be compared to those of previous models as well as to simulation results for a range of different relative permeability relationships. The study site is the Farnsworth Unit (FWU) in the northeast Texas Panhandle, an active CO2-EOR operation. The target formation is the Morrow ‘B’ Sandstone, a clastic formation composed of medium to course sands.
During the month of January 2019, the TBS crew made progress revamping the equipment to prepare for upcoming 2019 flights. Both winches were upgraded using a SE encore E43 59.3:1 gearbox coupled with a Leeson Permanent magnet motor. This increased the torque capability by approximately 3x and the rotational speed by ~30%. The existing electronics system on one winch was repurposed to power four 3,500 lb ATV winches. These winches will automate the retrieval of the balloons allowing for retrieval during faster winds, and thus increasing potential operating conditions, while also improving crew safety. The ATV winches are expected to be added to the second winch in February. Finally, a new electronics box was designed which will be used to power the new winch motor. The new winch motors are variable speed, meaning they accept 0-180V and the speed correlates to the input voltage. The new electronics boxes will be mounted directly to the winches to allow the winches to be removed from the trailers in case of size/weight operating limitations. The winches will instead be powered directly by 220V generators vs the lead acid battery banks used by the previous systems.