Publications

Results 1–25 of 65
Skip to search filters

Fuels Characterization for National Research Council Canada 2-m Pool Fire Test Series

Lord, David L.; Hogge, Joseph W.; Allen, Raymond G.

This report provides a detailed analysis of the physical and chemical properties of three liquid hydrocarbon fuels: heptane, Bakken crude, and a diluted bitumen, that were subsequently tested in a series of 2-m pool fire experiments at Sandia National Laboratories for the National Research Council Canada. Properties such as relative density, vapor pressure (VPCRx), composition, and heat of combustion were evaluated. The heptane analysis, with relative density = 0.69 (at 15°C), confirmed that the material tested was consistent with high-purity (>99%) n-heptane. The Bakken crude, with a relative density = 0.81 (at 15°C), exhibited a vapor pressure by VPCR0.2 (37.8°C) in the range 120-157 kPa. The dilbit, with a relative density = 0.92 (at 15°C) exhibited a vapor pressure by VPCR 0.2 (37.8°C) in the range 85-98 kPa. Solids remaining in the test pans after the pool fires were also collected and weighed. No detectable solids were left after the heptane burns. In contrast, the crude oils left some brittle, black solid residue. On average, dilbit pool fires left about 40 more residue by mass than Bakken pool fires for equivalent mass of fuel feed.

More Details

Identification of SPR Caverns with Multiple Oil Layers

Hogge, Joseph W.; Valdez, Raquel L.; Lord, David L.

This analysis shows that when lower density crude oil is injected into the top of an underground salt storage cavern containing more dense crude, separate oil phases can form and coexist indefinitely. This has been observed at the U.S. Strategic Petroleum Reserve in spite of geothermal heating and natural convection, which tend to mix the contents of containers with significant vertical extent subjected to wall and bottom heating. Such persistent layering can create operational challenges for meeting delivery specifications if high-value, low-vapor pressure oil becomes trapped below incoming low-density, high-vapor pressure oil, effectively blocking access to the lower layers until the top layer is removed. Previous conceptual models assumed that the oil injection process mixed incoming oil with resident oil in a storage cavern, forming a single oil phase with relatively homogeneous properties. Here, a review of historical data from the Strategic Petroleum Reserve revealed that several caverns contain multiple oil layers. As a result, oil layering needs to be another variable considered when planning oil movements at SPR in order to optimize low-vapor pressure oil availability to assist in oil delivery blending.

More Details

Modeling Study of Reduced Tubing Size Effects on Flow in Depleted Reservoir Natural Gas Storage Wells

Lord, David L.; Allen, Raymond G.

This report explores the effects of tubing size reductions on natural gas flow from representative depleted reservoir underground storage wells and fields using basic models for coupled reservoir and pipe flow. This work was motivated by interest at the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration, in evaluating the effects of tubing and packer as a potential safety upgrade to implement double-barrier systems to existing underground natural gas storage wells. Reservoir and well flow models were developed from widely accepted industry equations, verified against a commercial process simulator model, and validated against field data. The study utilized U.S. operator survey data to provide context and assure that modeling parameters including aver age deliverability rates for wells and fields, operating pressures, well depths, and storage capacities were all carefully considered to keep the modeling relevant to the known range of U.S. operations. The models generally found that wells and fields with inherently low deliverability were relatively insensitive to reductions in tubing diameter, primarily because the hydraulics in those cases were controlled by reservoir properties. For the high-producing wells and fields, the models found that reducing tubing diameter could produce significant reductions in deliverability, both at the field- and well-level. When put into context with occurrence data regarding average deliverability of fields and wells, it appears that most wells and most fields across the U.S. would experience deliverability reductions on the low end of what was simulated here, generally below 20%. For fields with moderate to high deliverability, reductions were generally larger, and could reach as high as 60% for the highest-producing wells and fields.

More Details

DOE/DOT Crude Oil Characterization Research Study, Task 2 Test Report on Evaluating Crude Oil Sampling and Analysis Methods, Revision 1 - Winter Sampling

Lord, David L.; Allen, R.J.; Rudeen, David K.; Wocken, C.W.; Aulich, T A.

The Crude Oil Characterization Research Study is designed to evaluate whether crude oils currently transported in North America, including those produced from “tight” formations, exhibit physical or chemical properties that are distinct from conventional crudes, and how these properties associate with combustion hazards that may be realized during transportation and handling. The current report presents results from Task 2, investigating which commercially available methods can accurately and reproducibly collect and analyze crude oils for vapor pressure and composition, including dissolved gases. This issue, Revision 1 – Winter Sampling, incorporates additional seasonal data and compositional analysis results that have become available since publication of a prior report, SAND2017-12482, released in December 2017. Both reports compare performance of commercially available methods to that of a well-established mobile laboratory system that currently serves as the baseline instrument system for the U.S. Strategic Petroleum Reserve Crude Oil Vapor Pressure Program. The experimental matrix evaluates the performance of selected methods for (i) capturing, transporting, and delivering hydrocarbon fluid samples from the field to the analysis laboratory, coupled with (ii) analyzing for properties related to composition and volatility of the oil, including vapor pressure, gas-oil ratio, and dissolved gases and light hydrocarbons. Several combinations of sample capture and analysis were observed to perform well in both summer and winter sampling environments, though conditions apply that need to be considered carefully for given applications. Methods that perform well from Task 2 will then be utilized in subsequent Task 3 (combustion studies) and Task 4 (compositional analyses of multiple crude types), to be addressed in subsequent reports.

More Details

DOE/DOT Crude Oil Characterization Research Study, Task 2 Test Report on Evaluating Crude Oil Sampling and Analysis Methods

Lord, David L.; Allen, Raymond G.; Rudeen, David K.

The Crude Oil Characterization Research Study is designed to evaluate whether crude oils currently transported in North America, including those produced from "tight" formations, exhibit physical or chemical properties that are distinct from conventional crudes, and how these properties associate with combustion hazards with may be realized during transportation and handling.

More Details

Technical Proposal for Loading 3000 Gallon Crude Oil Samples from Field Terminal to Sandia Pressurized Tanker to Support US DOE/DOT Crude Oil Characterization Research Study

Lord, David L.; Allen, Raymond G.

Sandia National Laboratories is seeking access to crude oil samples for a research project evaluating crude oil combustion properties in large-scale tests at Sandia National Laboratories in Albuquerque, NM. Samples must be collected from a source location and transported to Albuquerque in a tanker that complies with all applicable regulations for transportation of crude oil over public roadways. Moreover, the samples must not gain or lose any components, to include dissolved gases, from the point of loading through the time of combustion at the Sandia testing facility. In order to achieve this, Sandia designed and is currently procuring a custom tanker that utilizes water displacement in order to achieve these performance requirements. The water displacement procedure is modeled after the GPA 2174 standard “Obtaining Liquid Hydrocarbons Samples for Analysis by Gas Chromatography” (GPA 2014) that is used routinely by crude oil analytical laboratories for capturing and testing condensates and “live” crude oils, though it is practiced at the liter scale in most applications. The Sandia testing requires 3,000 gallons of crude. As such, the water displacement method will be upscaled and implemented in a custom tanker. This report describes the loading process for acquiring a ~3,000 gallon crude oil sample from commercial process piping containing single phase liquid crude oil at nominally 50-100 psig. This document contains a general description of the process (Section 2), detailed loading procedure (Section 3) and associated oil testing protocols (Section 4).

More Details
Results 1–25 of 65
Results 1–25 of 65