Publications

12 Results
Skip to search filters

Strengthening mechanisms in directed energy deposited austenitic stainless steel

Acta Materialia

Smith, Thale R.; Sugar, Joshua D.; San Marchi, Christopher W.; Schoenung, Julie M.

Microstructures and mechanical properties are evaluated in austenitic stainless steel structures fabricated by directed energy deposition (DED) considering the effects of applied loading orientation, build geometry, and distance from the deposition baseplate. Locations within an as-deposited build with different thermomechanical history display different yield strength, while those locations with similar history have approximately the same yield strength, regardless of test specimen orientation. Thermal expansion of deposited material near the baseplate is inhibited by the mechanical constraint imposed by the baseplate, promoting plastic deformation and producing a high density of dislocations. Concurrently, high initial cooling rates decrease away from the baseplate as the build is heated, causing an increased spacing of cellular solidification features. An analysis of strengthening mechanisms quantitatively established for the first time the important strengthening contribution of high dislocation densities in the materials (166–191 MPa) to yield strength that ranged from 438 to 553 MPa in the present DED fabricated structures. A newly adopted mechanistic relationship for microsegregation strengthening from the literature indicated an additional important contribution to strengthening (123–135 MPa) due to the cellular solidification features. These findings are corroborated by the measured evolution of microstructure and hardness caused by annealing the DED material. These results suggest that the mechanical properties of deposited austenitic stainless steels can be influenced by controlling thermomechanical history during the manufacturing process to alter the character of compositional microsegregation and the amount of induced plastic deformation.

More Details

Effects of extreme hydrogen environments on the fracture and fatigue behavior of additively manufactured stainless steels

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Smith, Thale R.; San Marchi, Christopher W.; Sugar, Joshua D.; Balch, Dorian K.

Additive manufacturing (AM) offers the potential for increased design flexibility in the low volume production of complex engineering components for hydrogen service. However the suitability of AM materials for such extreme service environments remains to be evaluated. This work examines the effects of internal and external hydrogen on AM type 304L austenitic stainless steels fabricated via directed-energy deposition (DED) and powder bed fusion (PBF) processes. Under ambient test conditions, AM materials with minimal manufacturing defects exhibit excellent combinations of tensile strength, tensile ductility, and fatigue resistance. To probe the effects of extreme hydrogen environments on the AM materials, tensile and fatigue tests were performed after thermalprecharging in high pressure gaseous hydrogen (internal H) or in high pressure gaseous hydrogen (external H). Hydrogen appears to have a comparable influence on the AM 304L as in wrought materials, although the micromechanisms of tensile fracture and fatigue crack growth appear distinct. Specifically, microstructural characterization implicates the unique solidification microstructure of AM materials in the propagation of cracks under conditions of tensile fracture with hydrogen. These results highlight the need to establish comprehensive microstructure-property relationships for AM materials to ensure their suitability for use in extreme hydrogen environments.

More Details

Materials and Hydrogen Isotope Science at Sandia's California Laboratory

Zimmerman, Jonathan A.; Balch, Dorian K.; Bartelt, Norman C.; Buchenauer, D.A.; Catarineu, Noelle R.; Cowgill, D.F.; El Gabaly Marquez, Farid E.; Karnesky, Richard A.; Kolasinski, Robert K.; Medlin, Douglas L.; Robinson, David R.; Ronevich, Joseph A.; Sabisch, Julian E.; San Marchi, Christopher W.; Sills, Ryan B.; Smith, Thale R.; Sugar, Joshua D.; Zhou, Xiaowang Z.

Abstract not provided.

Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel

JOM

Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Christopher W.

Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure–property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

More Details
12 Results
12 Results