Publications

Results 36401–36600 of 99,299

Search results

Jump to search filters

Quantum Testbeds Stakeholder Workshop (QTSW) Report meeting purpose and agenda

Hebner, Gregory A.

Quantum computing (QC) is a promising early-stage technology with the potential to provide scientific computing capabilities far beyond what is possible with even an Exascale computer in specific problems of relevance to the Office of Science. These include (but are not limited to) materials modeling, molecular dynamics, and quantum chromodynamics. However, commercial QC systems are not yet available and the technical maturity of current QC hardware, software, algorithms, and systems integration is woefully incomplete. Thus, there is a significant opportunity for DOE to define the technology building blocks, and solve the system integration issues to enable a revolutionary tool. Once realized, QC will have world changing impact on economic competitiveness, the scientific enterprise, and citizen well-being. Prior to this workshop, DOE / Office of Advanced Scientific Computing Research (ASCR) hosted a workshop in 2015 to explore QC scientific applications. The goal of that workshop was to assess the viability of QC technologies to meet the computational requirements in support of DOE’s science and energy mission and to identify the potential impact of these technologies.

More Details

Trapped Ion Qubits

Maunz, Peter L.W.

Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

More Details

Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer

Aldridge, David F.

Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and is acknowledged as the originator of the concept underpinning a recent patent grant (Aldridge and Bartel, 2016) involving electromagnetic wave scattering.

More Details

CINT_Report_April_2017

Seng, William F.

Polymer nanocomposites that integrate nanoparticles into polymer melts often possess superior mechanical, thermal, optical, or electrical properties in comparison with pure polymeric materials.

More Details

Validation of PV-RPM Code in the System Advisor Model

Klise, Geoffrey T.; Lavrova, Olga; Freeman, Janine

This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whether the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.

More Details

Guide to Using Sierra

Shaw, Ryan; Agelastos, Anthony M.; Miller, Joel D.

Sierra is an engineering mechanics simulation code suite supporting the Nation's Nuclear Weapons mission as well as other customers. It has explicit ties to Sandia National Labs' workfow, including geometry and meshing, design and optimization, and visualization. Dis- tinguishing strengths include "application aware" development, scalability, SQA and V&V, multiple scales, and multi-physics coupling. This document is intended to help new and existing users of Sierra as a user manual and troubleshooting guide.

More Details

SIERRA Code Coupling Module: Arpeggio User Manual Version 4.44

Team, Sierra T.

The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysics scenarios. The code suite is composed of several specialized applications which can operate either in standalone mode or coupled with each other. Arpeggio is a supported utility that enables loose coupling of the various Sierra Mechanics applications by providing access to Framework services that facilitate the coupling. More importantly Arpeggio orchestrates the execution of applications that participate in the coupling. This document describes the various components of Arpeggio and their operability. The intent of the document is to provide a fast path for analysts interested in coupled applications via simple examples of its usage.

More Details

The Portals 4.1 Network Programming Interface

Barrett, Brian; Brightwell, Ronald B.; Grant, Ryan; Hemmert, Karl S.; Foulk, James W.; Wheeler, Kyle; Underwood, Keith D.; Riesen, Rolf; Maccabe, Arthur B.; Hudson, Trammel

This report presents a specification for the Portals 4 networ k programming interface. Portals 4 is intended to allow scalable, high-performance network communication betwee n nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded syste ms. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platfor ms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is tar geted to the next generation of machines employing advanced network interface architectures that support enh anced offload capabilities.

More Details

Consolidated Quarterly Report: Number of potential release sites subject to corrective action

Cochran, John R.

This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent. The 12 sites in the corrective action process are listed in Table I-1.

More Details

File format for normalizing radiological concentration exposure rate and dose rate data for the effects of radioactive decay and weathering processes

Kraus, Terry

This report specifies the electronic file format that was agreed upon to be used as the file format for normalized radiological data produced by the software tool developed under this TI project. The NA-84 Technology Integration (TI) Program project (SNL17-CM-635, Normalizing Radiological Data for Analysis and Integration into Models) investigators held a teleconference on December 7, 2017 to discuss the tasks to be completed under the TI program project. During this teleconference, the TI project investigators determined that the comma-separated values (CSV) file format is the most suitable file format for the normalized radiological data that will be outputted from the normalizing tool developed under this TI project. The CSV file format was selected because it provides the requisite flexibility to manage different types of radiological data (i.e., activity concentration, exposure rate, dose rate) from other sources [e.g., Radiological Assessment and Monitoring System (RAMS), Aerial Measuring System (AMS), Monitoring and Sampling). The CSV file format also is suitable for the file format of the normalized radiological data because this normalized data can then be ingested by other software [e.g., RAMS, Visual Sampling Plan (VSP)] used by the NA-84’s Consequence Management Program.

More Details

Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

Journal of Thermal Spray Technology

Yang, Nancy; Yee, Joshua K.; Zheng, B.; Gaiser, K.; Reynolds, Thomas B.; Clemon, Lee; Lu, Wei-Yang; Schoenung, J.M.; Lavernia, Enrique J.

We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

More Details

Library of Advanced Materials for Engineering (LAME) 4.44

Plews, Julia A.; Crane, Nathan K.; De Frias, Gabriel J.; San LeSan; Littlewood, David J.; Merewether, Mark T.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy R.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael G.; Xavier, Patrick G.

Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to s ti ff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco) plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details
Results 36401–36600 of 99,299
Results 36401–36600 of 99,299