Publications

Results 1–25 of 51
Skip to search filters

Metal Hydride Compressor for High-Pressure (875 bar) Hydrogen Delivery

Johnson, Terry A.; Mallow, Anne M.; Bowman, Robert C.; Smith, D.B.; Anovitz, Lawrence M.; Jensen, Craig M.

Metal hydride hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas. This paper reports on the development of a laboratory scale two-stage Metal Hydride Compressor (MHC) system with a feed pressure of 150 bar delivering high purity H2 gas at outlet pressures up to 875 bar. Stage 1 and stage 2 AB 2 metal hydrides are identified based on experimental characterization of the pressure-composition-temperature (PCT) behavior of candidate materials. The selected metal hydrides are each combined with expanded natural graphite, increasing the thermal conductivity of the composites by an order of magnitude. These composites are integrated in two compressor beds with internal heat exchangers that alternate between hydrogenation and dehydrogenation cycles by thermally cycling between 20 C and 150 C. The prototype compressor achieved compression of hydrogen from 150 bar to 700 bar with an average flow rate of 33.6 g/hr .

More Details

Metal Hydride Compression

Johnson, Terry A.; Mallow, Anne M.; Bowman, Robert B.; Smith, Barton L.; Jensen, Craig J.

Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature fuel cell vehicle market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seals leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. MH technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supply via pipelines or tanker trucks, another attractive scenario is the on-site generation and delivery of pure H2 at pressure (> 875 bar) for refueling vehicles at electrolysis, wind, or solar H2 production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a twostage MH hydrogen gas compressor with a feed pressure of >100 bar and a delivery pressure > 875 bar of high purity H2 gas using the scheme shown in Figure 1. Progress to date includes the selection of metal hydrides for each compressor stage based on experimental characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, final bed designs have been completed based on trade studies and all components have been ordered. The prototype two-stage compressor will be fabricated, assembled, and experimentally evaluated in FY19.

More Details

Metal Hydride Compressor for High-Pressure (> 875 bar) Hydrogen Delivery

Johnson, Terry A.

This project will explicitly investigate and demonstrate on a laboratory scale a two-stage Metal Hydride Compressor (MHC) system with a feed pressure of approximately 100 bar delivering highpurity H2 gas at outlet pressures ≥ 875 bar capable of an energy efficiency of ≤ 4.0 kWh/kg relying on an innovative heat pump configuration at a refueling station.

More Details

Metal Hydride Compression

Johnson, Terry A.; Bowman, Robert B.; Smith, Barton L.; Anovitz, Lawrence M.; Jensen, Craig J.

Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a feed pressure of >50 bar and a delivery pressure ≥ 875 bar of high purity H2 gas using the scheme shown in Figure 1. Progress to date includes the selection of two candidate metal hydrides for each compressor stage, supplier engagement and synthesis of small samples, and the beginning of in-depth characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, bed design trade studies are underway and will be finalized in FY18. Subsequently, the prototype two-stage compressor will be fabricated, assembled and experimentally evaluated in FY19.

More Details

Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

International Journal of Hydrogen Energy

Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E.A.; Bilheux, Hassina Z.

Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. Furthermore, the evidence indicates that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.

More Details

Development of the HyStEP Device

SAE Technical Papers

Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny; Meadows, Graham; Quinlan, Liam; Wong, Brad

With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.

More Details

Development and Evaluation of a Rotating Heat Exchanger for HVAC Applications

Johnson, Terry A.; Zimmerman, Mark D.; Leick, Michael T.; Pearson, Matthew R.; Khakpour, Yasmin K.; Alahyari, Abbas A.

This report describes the first design of a n HVAC heat exchanger using the Sandia Cooler , i.e. air - bearing supported rotating heat exchanger . The project included developing ba seline performance requirements based on a residential HVAC system , analysis and design development of a Sandia Cooler assembly including a UTRC - designed diffuser , and performance measurement and validation of th is heat exchange system under realistic indo or and outdoor conditions .

More Details

Thermal model development and validation for rapid filling of high pressure hydrogen tanks

International Journal of Hydrogen Energy

Johnson, Terry A.; Bozinoski, Radoslav B.; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

Abstract This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Therefore, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

More Details

Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

Johnson, Terry A.; Kariya, Harumichi A.; Leick, Michael T.; Zimmerman, Mark D.; Li, Manjie L.; Du, Yilin D.; Lee, Hoseong L.; Hwang, Yunho H.; Radermacher, Reinhard R.

This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

More Details

Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD)

Johnson, Terry A.; Staats, Wayne L.; Leick, Michael T.; Zimmerman, Mark D.; Radermacher, Reinhard R.; Martin, Cara M.; Nasuta, Dennis N.; Kalinowski, Paul K.; Hoffman, William H.

This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

More Details
Results 1–25 of 51
Results 1–25 of 51