Publications

Results 9401–9600 of 99,299

Search results

Jump to search filters

Exploring Explicit Uncertainty for Binary Analysis (EUBA)

Leger, Michelle A.; Darling, Michael C.; Jones, Stephen T.; Matzen, Laura E.; Stracuzzi, David J.; Wilson, Andrew T.; Bueno, Denis; Christentsen, Matthew; Ginaldi, Melissa; Foulk, James W.; Heidbrink, Scott; Howell, Breannan C.; Leger, Chris; Reedy, Geoffrey; Rogers, Alisa; Williams, Jack

Reverse engineering (RE) analysts struggle to address critical questions about the safety of binary code accurately and promptly, and their supporting program analysis tools are simply wrong sometimes. The analysis tools have to approximate in order to provide any information at all, but this means that they introduce uncertainty into their results. And those uncertainties chain from analysis to analysis. We hypothesize that exposing sources, impacts, and control of uncertainty to human binary analysts will allow the analysts to approach their hardest problems with high-powered analytic techniques that they know when to trust. Combining expertise in binary analysis algorithms, human cognition, uncertainty quantification, verification and validation, and visualization, we pursue research that should benefit binary software analysis efforts across the board. We find a strong analogy between RE and exploratory data analysis (EDA); we begin to characterize sources and types of uncertainty found in practice in RE (both in the process and in supporting analyses); we explore a domain-specific focus on uncertainty in pointer analysis, showing that more precise models do help analysts answer small information flow questions faster and more accurately; and we test a general population with domain-general sudoku problems, showing that adding "knobs" to an analysis does not significantly slow down performance. This document describes our explorations in uncertainty in binary analysis.

More Details

Thermal decoupling of deuterons and tritons during the shock-convergence phase in Inertial Confinement Fusion implosions

Kabadi, Neel; Adrian, Patrick; Simpson, Raspberry; Bose, Arijit; Sutcliffe, Graeme; Lahmann, Brandon; Parker, Cody; Pearcy, Jacob; Reichelt, Benjamin; Frenje, Johan; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Forrest, Chad; Glebov, Vladimir; Janezic, Roger; Mannion, Owen M.; Stoeckl, Christian; Betti, Riccardo; Welch, Liam; Srinivasan, Bhuvana; Sio, Hong; Sanchez, Jorge; Atzeni, Stefano; Eriksson, Jacob; Taitano, Will; Keenan, Brett; Anderson, Steven; Simakov, Andre; Chacon, Louis; Brian, Appelbe

Abstract not provided.

Alpha Spectrometry Results for Groundwater Samples Collected in Northern Iraq and a Summary of the Environmental Setting of the Adaya Burial Site

Copland, John R.; Farrar, David R.; Osborn, Douglas

The Radiation Protection Center (RPC) of the Iraqi Ministry of Environment continues to evaluate the potential health impacts associated with the Adaya Burial Site, which is located 33 kilometers (20.5 miles) southwest of Mosul. This report documents the radiological analyses of 16 groundwater samples collected from wells located in the vicinity of the Adaya Burial Site and at other sites in northern Iraq. The Adaya Burial Site is a high-risk dump site because a large volume of radioactive material and contaminated soil is located on an unsecure hillside above the village of Tall ar Ragrag. The uranium activities for the 16 water samples in northern Iraq are considered to be naturally occurring and do not indicate artificial (man-made) contamination. With one exception, the alpha spectrometry results for the 16 wells that were sampled in 2019 indicate that the water quality concerning the three uranium isotopes (Uranium-233/234, Uranium-235/236, and Uranium-238) was acceptable for potable purposes (drinking and cooking). However, Well 7 in Mosul had a Uranium-233/234 activity concentration that slightly exceeded the World Health Organization guidance level. Eight of the 16 wells are located in the villages of Tall ar Ragrag and Adaya and had naturally occurring uranium concentrations. Wells in the villages of Tall ar Ragrag and Adaya are located near the Adaya Burial Site and should be sampled on an annual schedule. The list of groundwater analytes should include metals, total uranium, isotopic uranium, gross alpha/beta, gamma spectroscopy, organic compounds, and standard water quality parameters. Our current understanding of the hydrogeologic setting in the vicinity of the Adaya Burial Site is solely based on villager's domestic wells, topographic maps, and satellite imagery. To better understand the hydrogeologic setting, a Groundwater Monitoring Program needs to be developed and should include the installation of twelve groundwater monitoring wells in the vicinity of Tall ar Ragrag and the Adaya Burial Site. Characterization of the limestone aquifer and overlying alluvium is needed. RPC should continue to support health assessments for the villagers in Tall ar Ragrag and Adaya. Collecting samples for surface water (storm water), airborne dust, vegetation, and washway sediment should be conducted on a routine basis. Human access to the Adaya Burial Site needs to be strictly limited. Livestock access on or near the burial site needs to be eliminated. The surface-water exposure pathway is likely a greater threat than the groundwater exposure pathway. Installation of a surface-water diversion or collection system is recommended in order to reduce the potential for humans and livestock to come in contact with contaminated water and sediment. To reduce exposure to villagers, groundwater treatment should be considered if elevated uranium or other contaminants are detected in drinking water. Installing water-treatment systems would likely be quicker to accomplish than remediation and excavation of the Adaya Burial Site. The known potential for human exposure to uranium and metals (such as arsenic, chromium, selenium, and strontium) at the Adaya Burial Site is serious. Additional characterization , mitigation, and remediation efforts should be given a high priority.

More Details

Mechanical characterization of low modulus polymer-modified calcium-silicate-hydrate (C–S–H) binder

Cement and Concrete Composites

Starr, J.; Soliman, E.M.; Matteo, Edward N.; Dewers, Thomas; Stormont, J.C.; Reda Taha, M.M.

Calcium-silicate-hydrate (C–S–H) represents a key microstructural phase that governs the mechanical properties of concrete at a large scale. Defects in the C–S–H phase are also responsible for the poor ductility and low tensile strength of concrete. Manipulating the microstructure of C–S–H can lead to new cementitious materials with improved structural performance. This paper presents an experimental investigation aiming to characterize a new synthetic polymer-modified synthetic calcium-silicate-hydrate (C–S–H)/styrene-butadiene rubber (SBR) binder. The new C–S–H/SBR binder is produced by calcining calcium carbonate and mixing this with fumed silica (SiO2), deionized water and SBR. Mechanical, physical, chemical and microstructural characterization was conducted to measure the properties of new hardened C–S–H binder. Results from the experimental investigation demonstrate the ability to engineer a new C–S–H binder with low elastic modulus and improved toughness and bond strength by controlling the SBR content and method of C–S–H synthesis. The new binder suggests the possible development of a new family of low-modulus silica-polymer binders that might fit many engineering applications such as cementing oil and gas wells.

More Details

Influence of Al location on formation of silver clusters in mordenite

Microporous and Mesoporous Materials

Rimsza, Jessica; Chapman, Karena W.; Nenoff, Tina M.

Formation of zeolite supported Ag0 clusters depends on a combination of thermodynamically stable atomic configurations, charge balance considerations, and mobility of species on the surface and within pores. Periodic density functional theory (DFT) calculations were performed to evaluate how the location of Al in the mordenite (MOR) framework and humidity control Ag0 nanocluster formation. Four Al framework sites were studied (T1-T4) and the Al positions in the framework were identified by the shifts in the differential Al⋯Al pair distribution function (PDF). Furthermore, structural information about the Ag0 nanoclusters, such as dangling bonds, can be identified by Ag⋯Ag PDF data. For Ag0 formation in vacuum MOR structures with a Si:Al ratio of 5:1 with Al in the T1 position resulted in the most framework flexibility and the lowest Ag0 nanocluster charge, indicating the best result for formation of charge neutral nanoclusters. When water is present, Al in the T3 and T4 positions results in the formation of the smallest average Ag0 nanoclusters plus greater expansion of the O-T-O bond angle than in vacuum, indicating easier diffusion of the Ag0 nanoclusters to the surface. The presence of Al in 4-membered rings and in pairs indicates favorable MOR structures for formation of single Ag atoms, despite the existence of synthesis challenges. Therefore, Al in the T2 position is the least favorable for Ag0 nanocluster formation in both vacuum and in the presence of water. Al in the T1, T3, and T4 positions provides beneficial effects through framework flexibility and changes in nanocluster size or charge that can be leveraged for design of zeolites for formation of metallic nanoclusters.

More Details

Al-alkyls as acceptor dopant precursors for atomic-scale devices

Journal of Physics Condensed Matter

Owen, J.H.G.; Campbell, Quinn; Santini, R.; Ivie, Jeffrey A.; Baczewski, Andrew D.; Schmucker, Scott W.; Bussmann, Ezra; Misra, Shashank; Randall, J.N.

Atomically precise ultradoping of silicon is possible with atomic resists, area-selective surface chemistry, and a limited set of hydride and halide precursor molecules, in a process known as atomic precision advanced manufacturing (APAM). It is desirable to expand this set of precursors to include dopants with organic functional groups and here we consider aluminium alkyls, to expand the applicability of APAM. We explore the impurity content and selectivity that results from using trimethyl aluminium and triethyl aluminium precursors on Si(001) to ultradope with aluminium through a hydrogen mask. Comparison of the methylated and ethylated precursors helps us understand the impact of hydrocarbon ligand selection on incorporation surface chemistry. Combining scanning tunneling microscopy and density functional theory calculations, we assess the limitations of both classes of precursor and extract general principles relevant to each.

More Details

Electropotential Verification for Nuclear Safeguards

Baldez, Phoenix; Downs, Christine; Hamel, Michael C.; Weiss, Chester J.; Helguero, Rachel R.; Bland, Jesse J.

The international safeguards regime desires methods to efficiently verify that facilities are only performing declared activities. Electropotential verification (EPV) is a newly proposed technique that was tested for its feasibility to perform facility design information verification (DIV). EPV works by passing a constant, low voltage current through a conductive system (facility infrastructure of nuclear fuel assembly) and measuring the resulting voltage at various places throughout the infrastructure in order to establish a baseline. Changes made to the system affect these voltage readings, which will deviate from the baseline and indicate that a change to the system was made. For large scale infrastructure such as a nuclear facility DIV, it appears feasible that changes in configuration of the system’s grounding can be detected in real-time, and the location of the change can be inferred from the measured intensity of the change in voltage.

More Details

CSRI Summer Proceedings 2021

Smith, J.D.; Galvan, Edgar

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researches to learn about problems in computer and computational science at DOE laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, validation and verification methods, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers, beyond Moore’s Law computing, exascale computing tools and application design, reduced order and multiscale modeling, parallel input/output, and theoretical computer science. The CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the publication of a summer proceedings.

More Details

Electron Dynamics within a MITL Containing a Load

IEEE Transactions on Plasma Science

Hess, Mark H.; Evstatiev, Evstati G.

In this article, we derive the vacuum electric fields within specific cylindrically symmetric magnetically insulated transmission lines (MITLs) in the limit of an infinite speed of light for an arbitrary time-dependent current. We focus our attention on two types of MITLs: the radial MITL and a spherically curved MITL. We then simulate the motion of charged particles, such as electrons, present in these MITLs due to the vacuum fields. In general, the motion of charged particles due to the vacuum fields is highly nonlinear since the fields are nonlinear functions of spatial coordinates and depend on an arbitrary time-dependent current drive. Using guiding center theory, however, one can describe the gross particle kinetics using a combination of $\textbf {E} \times \textbf {B}$ and $\nabla B$ drifts. In addition, we compare our approximate inner MITL field models and particle kinetics with those from a fully electromagnetic simulation code. We find that the agreement between the approximate model and the electromagnetic simulations is excellent.

More Details

Three-dimensional Hot-spot Reconstruction in Inertial Fusion Implosions

Woo, Ka M.; Betti, Riccardo; Thomas, Cliff; Stoeckl, Christian; Zirps, Benjamin; Churnetski, Kristen; Forrest, Chad; Regan, Sean; Collins, Tim; Theobald, Wolfgang; Shah, Rahul; Mannion, Owen M.; Patel, Dhrumir; Cao, Duc; Knauer, James; Goncharov, Valeri; Bahukutumbi, Radha; Rinderknecht, Hans; Epstein, Reuben; Gopalaswamy, Varchas; Marshall, Fred

Abstract not provided.

Effective Permeability of a Nuclear Fuel Assembly

Gelbard, Fred M.; Keesling, Dallin

This report aids in the development of models to perform characterization studies of aerosol dispersal and deposition within a spent fuel cask system. Due to the complex geometry in a spent-fuel canister, direct simulation of buoyancy-driven flow through the fuel assemblies to model aerosol deposition within the fuel canister is computationally expensive. Identification of an effective permeability as given in this work for a nuclear fuel assembly greatly simplifies the requirements for thermal hydraulic computations. The results of computations performed using OpenFOAM® to solve the Navier-Stokes Equations for laminar flow are used to determine an effective permeability by applying Darcy's Law. The computations are validated against an analytical solution for the special case of an infinite array of pins for which the numerical and analytical solutions have excellent agreement. The effective permeability of a 1717 PWR nuclear fuel assembly in a basket without spacer grids is numerically determined to be 1.85010 -6 m 2 for the range of fluid viscosities and pressure drops expected in a spent fuel storage canister. However, the flow is not uniform on the scale of multiple pins. Instead, significantly higher velocities are attained in the space between the assembly and the basket walls compared to the flow between the fuel pins within the assembly. Comparison with an analytical solution for fully developed flow through an infinite array of pins shows that the larger spacing near the basket walls results in about a 20% larger permeability compared to the analytical solution which does not include the enhanced flow in the space between the assembly and basket wall, or entrance and exit effects. A preliminary assessment of turbulence effects shows that with a k-epsilon model, significantly higher flow velocities are attained between the fuel pins within the assembly compared to the flow velocity in the space between the assembly and the basket walls. This is the opposite of what is determined for laminar flow.

More Details

Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis (V.6.16 User's Manual)

Adams, Brian M.; Bohnhoff, William J.; Dalbey, Keith R.; Ebeida, Mohamed S.; Eddy, John P.; Eldred, Michael S.; Hooper, Russell W.; Hough, Patricia D.; Hu, Kenneth T.; Jakeman, John D.; Khalil, Mohammad; Maupin, Kathryn A.; Monschke, Jason A.; Ridgway, Elliott M.; Rushdi, Ahmad A.; Seidl, Daniel T.; Stephens, John A.; Swiler, Laura P.; Foulk, James W.; Winokur, Justin G.

The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

I.1 Heavy-Duty Diesel Combustion (Sandia National Laboratories)

Srna, Ales

Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of cleaner and more fuel-efficient engine operating strategies. Most current production heavy-duty diesel engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes that can be influenced by using multiple fuel injections. Past work performed under this project showed that adding a second injection can reduce soot to levels below what would have been produced by an unchanged first injection, thereby increasing load while decreasing soot and potentially reducing brake specific fuel consumption. Information characterizing the important in-cylinder processes with multiple injections has been gleaned from ensemble-averaged planar laser-induced incandescence (PLII) imaging visualizing the soot cloud and planar induced fluorescence (PLIF) of OH characterizing the soot oxidation regions. PLII showed a consistent disruption of the first injection soot cloud by the second injection. In conjunction with OH-PLIF, differences in soot oxidation patterns for multiple injections compared to single injections were observed. This understanding was further enhanced in FY20, when high-speed imaging resolving the above-mentioned effects in a single cycle were combined with direct numerical simulations investigating the multiple-injection ignition process on the microscopic level of turbulence and chemistry interaction. In FY21, these findings in conjunction with findings from other researchers published in the scientific literature were composed into a preliminary multiple-injection conceptual model of fuel-mixing, injection and ignition processes. Remaining key research questions were also highlighted. In addition, wall heat flux was investigated experimentally and with numerical simulations to understand the potential of multiple injections to reduce the engine heat losses and further enhance the efficiency.

More Details

Rattlesnake User's Manual

Rohe, Daniel P.; Schultz, Ryan; Foulk, James W.

Rattlesnake is a combined-environments, multiple input/multiple output control system for dynamic excitation of structures under test. It provides capabilities to control multiple responses on the part using multiple exciters using various control strategies. Rattlesnake is written in the Python programming language to facilitate multiple input/multiple output vibration research by allowing users to prescribe custom control laws to the controller. Rattlesnake can target multiple hardware devices, or even perform synthetic control to simulate a test virtually. Rattlesnake has been used to execute control problems with up to 200 response channels and 12 drives. This document describes the functionality, architecture, and usage of the Rattlesnake controller to perform combined environments testing.

More Details

Computational Risk Analysis of Propane Releases in Maintenance Facilities

Blaylock, Myra L.; Hecht, Ethan S.; Jordan, Cyrus J.

Liquefied petroleum gas (LPG) is a viable, cleaner alternative to traditional diesel fuel used in busses and other heavy-duty vehicles and could play a role in helping the US meet its lower emission goals. While the LPG industry has focused efforts on developing vehicles and fueling infrastructure, we must also establish safe parameters for maintenance facilities which are servicing LPG fueled vehicles. Current safety standards aid in the design of maintenance facilities, but additional quantitative analysis is needed to prove safeguards are adequate and suggest improvements where needed. In this report we aim to quantify the amount of flammable mass associated with propane releases from vehicle mounted fuel vessels within enclosed garages. Furthermore, we seek to qualify harm mitigation with variable ventilations and facility layout. To accomplish this we leverage validated computational resources at Sandia National Laboratories to simulate various release scenarios representative of real world vehicles and maintenance facilities. Flow solvers are used to predict the dynamics of fuel systems as well as the evolution of propane during release events. From our simulated results we observe that both inflow and outflow ventilation locations play a critical role in reducing flammable cloud size and potential overpressure values during a possible combustion event.

More Details

Transmitted wave measurements in cold sprayed materials under dynamic compression

Mccoy, Chad A.; Branch, Brittany A.; Vackel, Andrew

Spray-formed materials have complex microstructures which pose challenges for microscale and mesoscale modeling. To constrain these models, experimental measurements of wave profiles when subjecting the material to dynamic compression are necessary. The use of a gas gun to launch a shock into a material is a traditional method to understand wave propagation and provide information of time-dependent stress variations due to complex microstructures. This data contains information on wave reverberations within a material and provides a boundary condition for simulation. Here we present measurements of the wavespeed and wave profile at the rear surface of tantalum, niobium, and a tantalum/niobium blend subjected to plate impact. Measurements of the Hugoniot elastic limit are compared to previous work and wavespeeds are compared to longitudinal sound velocity measurements to examine wave damping due to the porous microstructure.

More Details

Modeling the Nonlinear Rheology of Polymer Additive Manufacturing

Connor, Joel T.'.; Clemmer, Joel T.; Grest, Gary S.; Stevens, Mark J.

This report summarizes molecular and continuum simulation studies focused on developing physics - based predictive models for the evolution of polymer molecular order during the nonlinear processing flows of additive manufacturing. Our molecular simulations of polymer elongation flows identified novel mechanisms of fluid dissipation for various polymer architectures that might be harnessed to enhance material processability. In order to predict the complex thermal and flow history of polymer realistic additive manufacturing processes, we have developed and deployed a high - performance mesh - free hydrodynamics module in Sandia's LAMMPS software. This module called RHEO – short for Reproducing Hydrodynamics and Elastic Objects – hybridizes an updated - Lagrange reproducing - kernel method for complex fluids with a bonded particle method (BPM) to capture solidification and solid objects in multiphase flows. In combination, our two methods allow rapid, multiscale characterization of the hydrodynamics and molecular evolution of polymers in realistic processing geometries.

More Details

Co-design Center for Exascale Machine Learning Technologies (ExaLearn)

International Journal of High Performance Computing Applications

Alexander, Francis J.; Ang, James; Casey, T.; Wolf, Michael; Rajamanickam, Sivasankaran

Rapid growth in data, computational methods, and computing power is driving a remarkable revolution in what variously is termed machine learning (ML), statistical learning, computational learning, and artificial intelligence. In addition to highly visible successes in machine-based natural language translation, playing the game Go, and self-driving cars, these new technologies also have profound implications for computational and experimental science and engineering, as well as for the exascale computing systems that the Department of Energy (DOE) is developing to support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific discovery on exascale systems, they also appear poised to have important implications for the design and use of exascale computers themselves, including high-performance computing (HPC) for ML and ML for HPC. The overarching goal of the ExaLearn co-design project is to provide exascale ML software for use by Exascale Computing Project (ECP) applications, other ECP co-design centers, and DOE experimental facilities and leadership class computing facilities.

More Details

A Medium Frequency RF Sensor for Detection of Magnetized Quark Nuggets

Borchardt, John

It is hypothesized that dark matter is composed of particles called quark nuggets, and further that these particles have a permanent magnetic dipole moment. If this hypothesis is true, calculations predict that a magnetized quark nugget (MQN) will oscillate when encountering the Earth's magnetosphere, and emit RF radiation between 30kHz and 30MHz. To support testing this hypothesis, a loop antenna sensor was designed and developed, which is described in this report. This sensor operates between 300kHz and 3MHz and achieves about -11dBfT/vHz sensitivity at 1.5MHz.

More Details

2020 Energy Storage Pricing Survey

Baxter, Richard

The annual Energy Storage Pricing Survey (ESPS) series is designed to provide a standardized reference system price for various energy storage technologies across a range of different power and energy ratings. This is an essential first step in comparing systems of the different technologies’ usage costs and total cost of ownership. The final system prices are developed based on data from an extensive set of interviews with representatives across the manufacturing and project development value chain, plus available published data. This information is incorporated into a consistent methodology structure that will allow pricing information to be incorporated at whatever level it was obtained, ranging from component to fully installed system. The ESPS system pricing methodology breaks down the cost of an energy storage system into the following component categories: the storage module; the balance of system; the power conversion system; the energy management system; and the engineering, procurement, and construction costs. By evaluating each of the different component costs separately, a more accurate system cost can be developed that provides internal pricing consistency between different project sizes using the same technology, as well as between different technologies that utilize similar components.

More Details

Material Interactions in Severe Accidents – Benchmarking the MELCOR V2.2 Eutectics Model for a BWR-3 Mark-I Station Blackout: Part II – Uncertainty Analysis

Nuclear Engineering and Design

Albright, Lucas I.; Andrews, Nathan; Humphries, Larry L.; Luxat, David L.; Jevremovic, Tatjana

Single case comparisons between severe accident simulations can provide detailed insights into severe accident model behavior, however, they cannot offer insights into model uncertainty, sensitivity to uncertain parameters, or underlying model biases. In this analysis, the single case benchmark comparison of the MELCOR material interaction models for a station blackout (SBO) scenario of a boiling water reactor (BWR) using representative Fukushima Daiichi Unit 1 boundary conditions is expanded to include an uncertainty analysis. As part of this uncertainty analysis, 1200 simulations are performed for each material interaction model (2400 total), with random sampling of 14 uncertain MELCOR input parameters. Input parameters are selected for their impact on models representing core degradation processes. These include candling, fuel rod failure, debris quenching and dryout. The analysis performed here is not a traditional “best-estimate” uncertainty analysis that uses best-estimate parameters or identifies best-estimate figure of merit distributions. Instead, it is an exploratory uncertainty analysis that identifies and interrogates underlying model form biases of the two material interaction models (eutectics and interactive materials models). Uniform distributions are applied to all uncertain parameters to ensure coverage of the model parameter uncertainty space. Key findings from this study include underlying model form biases exhibited by material interaction models, and notable differences in accident progression outcomes between the material interaction models. This uncertainty study extends and confirms the conclusions from the first part of this study, which compared the impact of material interaction modeling on simulation of a short-term station blackout scenario with representative Fukushima Daiichi Unit I boundary conditions. In particular, this study confirms that the eutectics model generally exhibits accelerated degradation and failure of fuel components, the core plate, and the lower head. The eutectics model also has a tendency to exhibit a greater degree of core degradation, greater debris mass formation, and larger debris mass ejection. Finally, the eutectics model exhibits higher maximum temperatures for fuel, cladding, particulate debris, oxidic molten pool, and metallic molten pool components than the interactive materials model; interactive materials model simulations exhibit a soft “limitation” on maximum temperatures that is related to the temperature at which material relocation occurs.

More Details

Ducted Fuel Injection and Cooled Spray Technologies for Particulate Control in Heavy-Duty Diesel Engines

Klingbeil, Adam

Heavy-Duty diesel engine manufacturers are continuously in pursuit of simple and low-cost technologies that can reduce emissions. Ducted fuel injection (DFI) and Cooled Spray (CS) technologies are two technologies that continue to show promise for significant particulate emissions reductions. These technologies represent a breakthrough in diesel engine combustion from the potential of nearly sootless diesel combustion. This can provide a significant decrease in harmful PM emissions and may enable further system optimization for reduced NOx emissions and increased efficiency. Combustion vessel experiments and engine demonstrations at Sandia, together with the large bore engine tests performed by Wabtec show that this technology may be applicable to heavy duty diesel engines across a wide range of engine sizes and speeds representing the majority of off-road diesel engines. However, very little is known about the ideal geometry, scaling properties or effectiveness of these technologies over the engine operating map. This project will address those uncertainties through a series of experiments performed in an optical and a metal single-cylinder engine.

More Details

I.6.C Battery Safety Testing

Lamb, Joshua

Abuse tests are designed to determine the safe operating limits of HEV\PHEV energy storage devices. Testing is intended to achieve certain worst-case scenarios to yield quantitative data on cell\module\pack response, allowing for failure mode determination and guiding developers toward improved materials and designs. Standard abuse tests with defined start and end conditions are performed on all devices to provide comparison between technologies. New tests and protocols are developed and evaluated to more closely simulate real world failure conditions. While robust mechanical models for vehicles and vehicle components exist, there is a gap for mechanical modeling of EV batteries. The challenge with developing a mechanical model for a battery is the heterogeneous nature of the materials and components (polymers, metals, metal oxides, liquids).

More Details

Development of the MARZ platform (Magnetically Ablated Reconnection on Z) to study astrophysically relevant radiative magnetic reconnection in the laboratory

Myers, Clayton; Hare, Jack; Ampleford, David J.; Aragon, Carlos; Chittenden, Jeremy; Colombo, Anthony; Crilly, Aidan; Datta, Rishabh; Edens, Aaron; Fox, Will; Gomez, Matthew R.; Halliday, Jack; Hansen, Stephanie B.; Harding, Eric H.; Harmon, Roger; Jones, Michael; Jennings, Christopher A.; Ji, Hantao; Kuranz, Carolyn; Lebedev, Sergey; Looker, Quinn M.; Melean, Raul; Uzdensky, Dmitri; Webb, Timothy J.

Abstract not provided.

Chemical insights into the multi-regime low-temperature oxidation of di-n-propyl ether: Jet-stirred reactor experiments and kinetic modeling

Combustion and Flame

Hansen, Nils; Fan, Xuefeng; Sun, Wenyu; Gao, Yi; Chen, Bingjie; Pitsch, Heinz; Bin YangBin

To further understand the combustion characteristics and the reaction pathways of acyclic ethers, the oxidation of di-n-propyl ether (DPE) was investigated in a jet-stirred reactor (JSR) combined with a photoionization molecular-beam mass spectrometer. The experiments were carried out at near-atmospheric pressure (700 Torr) and over a temperature range of 425–850 K. Based on the experimental data and previous studies on ether oxidation, a new kinetic model was constructed and used to interpret the oxidation chemistry of DPE. In DPE oxidation, a high reactivity at low temperatures and two negative temperature coefficient (NTC) zones were observed. These behaviors are explained in this work by taking advantage of the obtained species information and the modeling analyses: the two NTC zones are caused by the competition of chain branching and termination reactions of the fuel itself and specific oxidation intermediates, respectively. Furthermore, the general requirements to have double-NTC behavior are discussed. A variety of crucial fuel-specific C6 species, such as ketohydroperoxides and diones, were detected in the species pool of DPE oxidation. Their formation pathways are illuminated based on rate-of-production (ROP) analyses. Propanal was identified as the most abundant small molecule intermediate, and its related reactions have an important impact on the oxidation process of DPE. Both acetic acid and propionic acid were detected in high concentrations. A new formation pathway of propionic acid is proposed and incorporated into the kinetic model to achieve a more accurate prediction for propionic acid mole fractions.

More Details

Preliminary EDS Liquid Sample Adapter Design Assurance Testing

Crocker, Robert W.; Raber, Thomas

A new liquid sample adapter design for the Explosive Destruction Systems has been developed. The design features a semi-transparent fluoropolymer tube coupled to the vessel high pressure sample valve with a closing quick connect fitting. The sample tubes are the pressure-limiting component. The tubes were hydrostatically tested to establish failure characteristics and pressure limits at ambient and operational temperatures. A group of tubes from two manufacturing lots were tested to determine the consistency of the commercial part. An upper pressure limit was determined for typical operations.

More Details

Gen 3 Particle Pilot Plant (G3P3) -- High-Temperature Particle System for Concentrating Solar Power (Phases 1 and 2)

Ho, Clifford K.; Sment, Jeremy N.I.; Albrecht, Kevin; Mills, Brantley; Schroeder, Nathaniel R.

The U.S. Department of Energy Solar Energy Technologies Office initiated the Generation 3 Concentrating Solar Power (CSP) program to achieve higher operating temperatures (>700 °C) to enable next-generation CSP high-temperature power cycles such as the supercritical CO2 (sCO2) Brayton Cycle. Three teams were selected to pursue high-temperature gas, liquid, and solid pathways for the heat-transfer media. Phases 1 and 2, which lasted from 2018 – 2020, consisted of design, modeling, and testing activities to further de-risk each of the technologies and develop a design for construction, commissioning, and operation of a pilot-scale facility in Phase 3 (2021 – 2024). This report summarizes the activities in Phases 1 and 2 for the solid-particle pathway led by Sandia National Laboratories. In Phases 1 and 2, Sandia successfully de-risked key elements of the proposed Gen 3 Particle Pilot Plant (G3P3) by improving the design, operation, and performance of key particle component technologies including the receiver, storage bins, particle-to-sCO2 heat exchanger, particle lift, and data acquisition and controls. Modeling and testing of critical components have led to optimized designs that meet desired performance metrics. Detailed drawings, piping and instrumentation diagrams, and process flow diagrams were generated for the integrated system, and structural analyses of the assembled tower structure were performed to demonstrate compliance with relevant codes and standards. Instrumentation and control systems of key subsystems were also demonstrated. Together with Bridgers & Paxton, Bohannan Huston, and Sandia Facilities, we have completed a 100% G3P3 tower design package with stamped engineering drawings suitable for construction bid in Phase 3.

More Details

Simultaneous Imaging of Molecular Rovibrational Nonequilibrium, Reactive Species, and Electric Field for Plasma-Assisted Chemistry

Kliewer, Christopher; Vorenkamp, Madeline; Ju, Yiguang

The Sandia-PRF has built a new capability for the low-temperature plasma community for the simultaneous imaging of molecular rotation/vibration nonequilibrium, electric field, and the distribution of OH radical and formaldehyde in reactive low temperature plasma systems. The system is currently investigating the plasma-assisted deflagration to detonation transition in a micro-combustor channel.

More Details

CSRI Summer Proceedings 2021

Smith, J.D.; Galvan, Edgar

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researches to learn about problems in computer and computational science at DOE laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, validation and verification methods, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers, beyond Moore’s Law computing, exascale computing tools and application design, reduced order and multiscale modeling, parallel input/output, and theoretical computer science. The CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the publication of a summer proceedings.

More Details

ASMT-783246, Assessment Report for Department 635 Analysis of Fiscal Year 2021 ES&H Events

Morgans-Harrer, Kathleen

This assessment analyzes Environment, Safety, and Health (ES&H) occurrences and Non-Occurrence Trackable Events (NOTEs) from fiscal year (FY) 2021. For this report, assessors used three primary methods for categorizing occurrence and NOTE data: issue categorization, DOE reporting criteria groups, and DOE cause codes. The FY 2021 Q1 occurrence and NOTE total was the lowest since this type of analysis began in FY 2018 Q4, following a downward trend from the FY 2019 Q3 high point. The FY 2021 Q2 occurrence and NOTE total was nearly double the FY 2021 Q1 total; occurrence totals declined slightly in Q3 and Q4, while NOTE totals remained the same. NOTEs in each of the final three quarters were more than double the amount from Q1. This assessment resulted in one observation. As COVID-19 vaccination rates increase and COVID 19 impacts on operations decrease, the number of workers on-site and the amount of activity-level work will increase. With these changes, focused attention on the following areas related to work planning and controls may reduce the probability of future events, hazard identification and analysis, compliance with standards, formality of operations, and job scoping.

More Details

Soot Predictions with a Laminar Flamelet Combustion Model in SIERRA/Fuego on a Coflow Scenario

Kurzawski, John C.; Hansen, Michael A.; Hewson, John C.

This report describes an assessment of flamelet based soot models in a laminar ethylene coflow flame with a good selection of measurements suitable for model validation. Overall flow field and temperature predictions were in good agreement with available measurements. Soot profiles were in good agreement within the flame except for near the centerline where imperfections with the acetylene-based soot-production model are expected to be greatest. The model was challenged to predict the transition between non-sooting and sooting conditions with non-negligible soot emissions predicted even down to small flow rates or flame sizes. This suggests some possible deficiency in the soot oxidation models that might alter the amount of smoke emissions from flames, though this study cannot quantify the magnitude of the effect for large fires.

More Details

Sandia National Laboratories FY21 Progress Report

Aguirre, Brandon A.

The Energetic Neutrons campaign led by Sandia National Laboratories (SNL) had a successful year testing electronic devices and printed circuit boards (PCBs) under 14 MeV neutron irradiation at OMEGA. During FY21 Sandia’s Neutron Effects Diagnostics (NEDs) and data acquisition systems were upgraded to test novel commercial off-the-shelf and Sandia-fabricated electronic components that support SNL’s National Security mission. The upgrades to the Sandia platform consisted of new cable chains, sample mount fixtures and a new fiber optics platform for testing optoelectronic devices.

More Details

Gimballed Tracking Mount Pointing Angle Qualification

Miller, Timothy J.; Tashiro, Jonathan; Stovall, Kevin M.; Frederick, Donald; Watts, Glen; Crowder, Richard

Tonopah Test Range (TTR), in support of its testing mission and modernization effort acquired a fleet of new gimballed tracking mounts (GTMs) manufactured by BAE Systems. The new GTMs can be operated remotely during flight tests and provide near real-time target tracking data. Furthermore, test vehicle Time-Space-Position-Information (TSPI) is evaluated using post-test synchronized imagery and pointing angle measurements acquired from each tracking mount. To comply with the Nuclear Enterprise Assurance Program (NEAP), all measurements devices must be certified. In keeping with the NEAP program, qualification of the new GTMs have been assessed to confirm that their pointing angle measurements produce acceptable TSPI results. This study only evaluated the four GTMs as a stand-alone solution and found that the GTMs meet their performance requirement of 0.006 degrees RMS error (or less) for post-processed pointing angles and produced TSPI solution with error volumes on the order of one meter or less. The new GTMs will be utilized in combination with existing optical tracking mounts, which will only improve the accuracy of the resulting TSPI data product. Details regarding the approach, analysis, summary results, and conclusions are presented.

More Details

Physical Protection Recommendations for Small Modular Reactor Facilities

Evans, Alan S.

This recommendation document will provide international partners insight on physical protection systems (PPSs) for small modular reactors (SMRs). SMRs create many unique challenges for physical protection that must be addressed in design and implementation. This document will attempt to highlight possible challenges of SMRs and identify potential physical protection recommendations to mitigate these challenges. These recommendations are based on hypothetical SMR facilities and PPSs and their effectiveness against hypothetical adversaries.

More Details

Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) (Technical Reference Manual V.4)

Hecht, Ethan S.; Ehrhart, Brian D.; Groth, Katrina M.; Reynolds, John T.; Blaylock, Myra L.; Carrier, Erin E.

The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane infrastructure and transportation systems. HyRAM+ is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ includes generic probabilities for equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of release and flame physics. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impact on people and structures. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards. HyRAM+ is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM+ version 4.0. The most significant change for HyRAM+ version 4.0 from HyRAM version 3.1 is the incorporation of other alternative fuels, namely methane (as a proxy for natural gas) and propane into the toolkit. This change necessitated significant changes to the installable graphical user interface as well as changes to the back-end Python models. A second major change is the inclusion of physics models for the overpressure associated with the delayed ignition of an unconfined jet/plume of flammable gas.

More Details

Laser-Direct-Drive Cryogenic Implosion Performance on OMEGAVersus Target and Laser-Spot Radius

Thomas, Cliff; Theobald, Wolfgang; Knauer, James; Stoeckl, Christian; Collins, Tim; Goncharov, Valeri; Betti, Riccardo; Campbell, Michael; Anderson, Ken; Bauer, Katelynn; Cao, Duc; Craxton, Steve; Edgell, Dana; Epstein, Reuben; Forrest, Chad; Glebov, Vladimir; Gopalaswamy, Varchas; Igumenshchev, Igor; Ivancic, Steve; Jacobs-Perkins, Doug; Janezic, Roger; Joshi, Tirtha; Kwiatkowski, Joseph; Lees, Aarne; Mannion, Owen M.; Marshall, Fred; Michalko, Michael; Mohamed, Zaarah; Patel, Dhrumir; Peebles, Jonathan; Radha, Bahukutumbi; Regan, Sean; Rinderknecht, Hans; Rosenberg, Michael; Sampat, Siddharth; Sangster, Thomas; Shah, Rahul; Baker, Kevin; Kritcher, Andrea; Tabak, Max; Herrmann, Mark; Christopherson, Allison

Abstract not provided.

Single Photon Emitters Coupled to Photonic Wire bonds

Mounce, Andrew M.; Kaehr, Bryan J.; Titze, Michael; Bielejec, Edward S.; Byeon, Heejun

This project will test the coupling of light emitted from silicon vacancy and nitrogen vacancy defects in diamond into additively manufactured photonic wire bonds toward integration into an "on-chip quantum photonics platform". These defects offer a room-temperature solid state solution for quantum information technologies but suffer from issues such as low activation rate and variable local environments. Photonic wire bonding will allow entanglement of pre-selected solid-state defects alleviating some of these issues and enable simplified integration with other photonic devices. These developments could prove to be key technologies to realize quantum secured networks for national security applications.

More Details

BayoTech Risk and Modeling Support

Glover, Austin M.; Lafleur, Angela (Chris)

This white paper describes the work performed by Sandia National Laboratories in the New Mexico Small Business Agreement with BayoTech. BayoTech is a hydrogen generation and distribution company that is located in Albuquerque, NM. Their goal is to distribute hydrogen via their hydrogen systems which utilize the core design that was developed by Sandia. However, because the hydrogen economy is in its nascency, the safety and operation of the generating systems require independent validation. Additionally, in their pursuit of permitting at various locations around the nation, they require fire protection engineering support in discussions with local fire marshals and neighboring industrial entities. Sandia National Laboratories has subject matter expertise in hydrogen risk modeling of consequence (overpressure and dispersion) as well as fire protection engineering. Throughout this project, Sandia has worked with BayoTech to provide our expertise in these subject areas to facilitate the market entry of their hydrogen generation project to address the dire need for decarbonization due to climate change. The general approach of the support by Sandia is outlined in the main body, while the location specific evaluation for the Port of Stockton is contained in Appendix A.

More Details
Results 9401–9600 of 99,299
Results 9401–9600 of 99,299