Publications

4 Results
Skip to search filters

A compact x-ray diffraction system for dynamic compression experiments on pulsed-power generators

Review of Scientific Instruments

Ao, Tommy A.; Morgan, D.V.; Stoltzfus, Brian S.; Austin, Kevin N.; Usher, Joshua M.; Breden, E.; Pacheco, L.M.; Dean, S.; Brown, Justin L.; Duwal, Sakun D.; Fan, H.; Kalita, P.; Knudson, M.D.; Rodriguez, Mark A.; Lane, J.M.D.

Pulsed-power generators can produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies using the magnetic loading technique. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects, such as dislocations. Here, we present a cost-effective, compact, pulsed x-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically driven ramp compression of materials with a single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials' community to investigate in situ dynamic phase transitions critical to equation of states. We present results using this new diagnostic to evaluate lattice compression in Zr and Al and to capture signatures of phase transitions in CdS.

More Details

A Platform-Independent X-ray Diffraction Diagnostic for Phase Transition Kinetics in Traditional and Synthetic Microstructure Materials (LDRD Project 213088 Final Report)

Ao, Tommy A.; Austin, Kevin N.; Breden, E.W.; Brown, Justin L.; Dean, Steven W.; Duwal, Sakun D.; Fan, Hongyou F.; Kalita, Patricia K.; Knudson, Marcus D.; Meng, Lingyao M.; Morgan, Dane D.; Pacheco, Lena M.; Qin, Yang Q.; Stoltzfus, Brian S.; Thurston, Bryce A.; Usher, Joshua M.; Lane, James M.

Pulsed-power generators using the magnetic loading technique are able to produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects such as dislocations. Here, we present a cost effective, compact X-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically-driven ramp compression of materials with single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials community. The success in fielding this new XRD diagnostic dramatically improves our predictive capability and understanding of rate-dependent behavior at or near phase transition. As Sandia plans the next-generation pulse-power driver platform, a key element needed to deliver new state-of-the-art experiments will be having the necessary diagnostic tools to probe new regimes and phenomena. These diagnostics need to be as versatile, compact, and portable as they are powerful. The development of a platform-independent XRD diagnostic gives Sandia researchers a new window to study the microstructure and phase dynamics of materials under load. This project has paved the way for phase transition research in a variety of materials with mission interest.

More Details

Impact Testing and Analysis of Modified Metal Slugs

Dean, Steven W.; Hodge, K.C.; Usher, Joshua M.; Pacheco, Lena M.

This report summarizes initial results from a series of gun experiments which were conducted at the DICE facility. The target of these experiments was a modified metal slug composed of a tantalum/tungsten alloy (Ta-10W). The general geometry of the slug was a right circular cylinder with a through-hole cut normal to the cylinder's axis. In all experiments, hardened steel impactors were used, the desired impact velocity was 200 m/s, the slug was preheated to a target temperature of 175° C, photon doppler velocimetry (PDV) was used to measure the projectile velocity before and after impact, and the impact event was recorded with high-speed video. In two of the impacts the slug was oriented perpendicular to the projectile, while in the remaining two it was tilted 8° from normal. Initial high-speed speed video results showed slug failure in the tilted impact case, while the slug survived normal impacts. Recovery fixtures were used to preserve impacted slugs for future postmortem analysis. Discussions are included regarding improvements to potential future experiments involving these slugs.

More Details
4 Results
4 Results