GEMMA Electromagnetic Code and ADELUS - New Capabilities
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2021 International Conference on Electromagnetics in Advanced Applications, ICEAA 2021
Metallic enclosures are commonly used to protect electronic circuits against unwanted electromagnetic (EM) interactions. However, these enclosures may be sealed with imperfect mechanical seams or joints. These joints form narrow slots that allow external EM energy to couple into the cavity and then to the internal circuits. This coupled EM energy can severely affect circuit operations, particularly at the cavity resonance frequencies when the cavity has a high Q factor. To model these slots and the corresponding EM coupling, a thin-slot sub-cell model [1] , developed for slots in infinite ground plane and extended to numerical modeling of cavity-backed apertures, was successfully implemented in Sandia's electromagnetic code EIGER [2] and its next-generation counterpart Gemma [3]. However, this thin-slot model only considers resonances along the length of the slot. At sufficiently high frequencies, the resonances due to the slot depth must also be considered. Currently, slots must be explicitly meshed to capture these depth resonances, which can lead to low-frequency instability (due to electrically small mesh elements). Therefore, a slot sub-cell model that considers resonances in both length and depth is needed to efficiently and accurately capture the slot coupling.
IEEE Transactions on Parallel and Distributed Systems
As the push towards exascale hardware has increased the diversity of system architectures, performance portability has become a critical aspect for scientific software. We describe the Kokkos Performance Portable Programming Model that allows developers to write single source applications for diverse high performance computing architectures. Kokkos provides key abstractions for both the compute and memory hierarchy of modern hardware. Here, we describe the novel abstractions that have been added to Kokkos recently such as hierarchical parallelism, containers, task graphs, and arbitrary-sized atomic operations. We demonstrate the performance of these new features with reproducible benchmarks on CPUs and GPUs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Solving dense systems of linear equations is essential in applications encountered in physics, mathematics, and engineering. This paper describes our current efforts toward the development of the ADELUS package for current and next generation distributed, accelerator-based, high-performance computing platforms. The package solves dense linear systems using partial pivoting LU factorization on distributed-memory systems with CPUs/GPUs. The matrix is block-mapped onto distributed memory on CPUs/GPUs and is solved as if it was torus-wrapped for an optimal balance of computation and communication. A permutation operation is performed to restore the results so the torus-wrap distribution is transparent to the user. This package targets performance portability by leveraging the abstractions provided in the Kokkos and Kokkos Kernels libraries. Comparison of the performance gains versus the state-of-the-art SLATE and DPLASMA GESV functionalities on the Summit supercomputer are provided. Preliminary performance results from large-scale electromagnetic simulations using ADELUS are also presented. The solver achieves 7.7 Petaflops on 7600 GPUs of the Sierra supercomputer translating to 16.9% efficiency.
Abstract not provided.
IEEE Transactions on Electromagnetic Compatibility
In this article, we examine the coupling into an electrically short azimuthal slot on a cylindrical cavity operating at fundamental cavity modal frequencies. We first develop a matched bound formulation through which we can gather information for maximum achievable levels of interior cavity fields. Actual field levels are below this matched bound; therefore, we also develop an unmatched formulation for frequencies below the slot resonance to achieve a better insight on the physics of this coupling. Good agreement is observed between the unmatched formulation, full-wave simulations, and experimental data, providing a validation of our analytical models. We then extend the unmatched formulation to treat an array of slots, found again in good agreement with full-wave simulations. These analytical models can be used to investigate ways to mitigate electromagnetic interference and electromagnetic compatibility effects within cavities.
Abstract not provided.
2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings
This paper implemented an approximate direct inverse for the surface integral equation including multilevel fast-multipole method. We apply it as a preconditioner to two examples suffering convergence problem with an iterative solver.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.