This report covers recent progress on research tasks that support both the Co-Optimization of Fuels and Engines (Co-Optima) initiative and the Partnership to Advance Combustion Engines (PACE) consortium. The Co-Optima tasks further the science-base needed by industry stakeholders to co-evolve the next generation of highly efficient direct injection spark ignition (DISI) engines and new gasoline-type fuels. The research emphasis is on fuel effects on multimode spark ignition (SI) engine operation, which uses traditional non-dilute stoichiometric operation for peak load and power but reverts to lean operation at lower loads to provide higher fuel economy. This work focuses on determining desirable fuel specifications in terms of well-established metrics like research octane number (RON) and motor octane number, but it also involves the assessment of new fuel metrics, including fuel sooting propensity and phi-sensitivity. The PACE task supports the development of predictive computational fluid dynamics (CFD) modeling, which promises to unlock new strategies for high-efficiency combustion while minimizing tailpipe emissions. Here, the primary fuel is a regular E10 gasoline (i.e., a regular gasoline blend containing 10% ethanol), and focus is on fuel-spray dynamics and soot emissions. Soot-formation pathways are studied to determine how the pathways change with injection strategies and the thermal state of the engine (i.e., cold-starting vs. fully warmed-up operation). This PACE task also contributed to the development of an optimal E10 gasoline surrogate fuel, as reported in detail elsewhere
In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40–50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss.
This report documents the progress in preparing the ANSYS/Fluent® and MELCOR models to perform characterization studies of aerosols dispersal and deposition within a select spent fuel cask system. Steady state thermal-hydraulic cask response is modeled with both codes, at present, while the MELCOR source code is being modified to allow imposed thermal-hydraulic conditions with aerosol physics calculations. This will allow the MELCOR model to assume the thermal-hydraulic calculation from the ANSYS/Fluent®, while only computing the aerosol physics. Detailed results are presented on the thermal-hydraulic analysis of the MAGNASTOR® cask for the current ANSYS/Fluent® model, with convergent conditions observed over two fidelities. While the MELCOR computation computes the steady state conditions, they differ sufficiently from that computed with ANSYS/Fluent®. The MELCOR analysis include a set of UO2 sources to investigate system response for interim reporting. The airborne concentrations and evolving distributions are presented. Model development is anticipated to continue as additional components impacting flow conditions or aerosol deposition within the MAGNASTOR® cask and Westinghouse fuel assemblies are identified.
The mechanical performance of an Fe-Co intermetallic alloy processed by laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED) additive manufacturing is compared. L-PBF material was characterized by high strength (500–550 MPa) and high ductility (35%) in tension, corresponding to a ~250% increase in strength and an order-of-magnitude improvement in ductility relative to conventional material. Conversely, L-DED material exhibited similarly poor tensile properties to the conventional wrought alloy, with low strength (200–300 MPa) and low ductility (0–2.7%). The disparity in properties between L-PBF and L-DED material is discussed in the context of the fundamental differences between manufacturing methods.
Radar is by its basic nature a ranging instrument. If radar range measurements from multiple directions can be made and assembled, then multilateration allows locating a feature common to the set of Synthetic Aperture Radar (SAR) images to an accurate 3-D coordinate. The ability to employ effective multilateration algorithms is highly dependent on the geometry of the data collections, and the accuracy with which relative range measurements can be made. The problem can be cast as a least-squares exercise, and the concept of Dilution of Precision can describe the accuracy and precision with which a 3-D location can be made.
MagLIF experiments [M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)] on Z have demonstrated the basic principles of Magneto-Inertial Fusion (MIF) for wall confined plasmas. Other MIF schemes have been proposed based on the liner implosion of closed field magnetically confined plasmas such as Field Reversed Configurations (FRCs) [T. P. Intrator et al., Phys. Plasmas 15, 042505 (2008)]. We present a semi-analytical model of liner driven FRC implosions that predicts the fusion gain of such systems. The model predicts a fusion gain near unity for an FRC imploded by a liner driven by the Z Machine. We show that FRCs could be formed and imploded at the Z facility using the AutoMag liner concept [S. A. Slutz et al., Phys. Plasmas 24, 012704 (2017)]. An initial bias magnetic field can be supplied by the external magnets used in MagLIF experiments. The reverse field is then supplied by an AutoMag liner, which has helical conducting paths imbedded in an insulating substance. Experiments [Shipley et al., Phys. Plasmas 26, 052705 (2019)] have demonstrated that AutoMag can generate magnetic fields greater than 30 Tesla inside of the liner. We have performed 2D Radiation MHD simulations of the formation and implosion of an FRC, which are in good agreement with the analytical model. The FRC formation process could be studied on small pulsed power machines delivering about 1 MA.
Security systems that protect the nation’s critical facilities must be capable of detecting physical intrusions in all weather conditions. Intrusion detection sensors in a perimeter with a high nuisance alarm rate (NAR) significantly undermine detection performance and degrade security system effectiveness. This research demonstrated a fused sensor system that can differentiate foliage and weather-induced nuisance alarms from those caused by intruders, providing reliable detection within a two-fence perimeter or beyond the fence. A key element of this work is the creation and application of a “deliberate motion algorithm” that fuses alarm data from radar and video analytics to create video motion detection fused radar system. The two-layer architecture of the algorithm uses machine learning, multi-hypothesis tracking, and Dynamic Bayes Nets to differentiate intruder alarms from weather induced alarms.
We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.
Diffusion bonded heat exchangers, also known as printed circuit heat exchangers (PCHEs), have numerous benefits over traditional shell and tube heat exchangers including high pressure containment, a compact size with 1000 to 5000 m2 of surface area per unit volume, and lower costs. One emerging application is in hydrogen vehicle fueling stations as a hydrogen pre-cooler (H2PC™) where the hydrogen is cooled at pressures up to 900 bar. These pre-coolers must be able to withstand pressure cycling over 105 cycles during the fueling station lifetime without degradation of their pressure vessel integrity that could result in hydrogen leakage.
The National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) to 1) align investments in a university capacity and workforce development with the NNSA mission to develop the needed skills and talent for NNSA’s enduring technical workforce at the laboratories and production plants, and 2) to enhance research and education at under-represented colleges and universities. Out of this effort, MSIPP launched a new consortium in early FY17 focused on Tribal Colleges and Universities (TCUs) known as the Advanced Manufacturing Network Initiative (AMNI). This consortium has been extended for FY20 and FY21. The following report summarizes the status update during this quarter.
Throughout U.S. Department of Energy (DOE) complexes, safety engineers employ the five-factor formula to calculate the source term (ST) that includes parameters of airborne release fraction (ARF), respirable fraction (RF) and damage ratio (DR). Limited experimental data on fragmentation of solids, such as ceramic pellets (i.e., PuO2), and container breach due to mechanical insults (i.e., drop and forklift impact), can be supplemented by modeling and simulation using high fidelity computational tools to estimate these parameters. This paper presents the use of Sandia National Laboratories' SIERRA solid mechanics (SM) finite element code to investigate the behavior of the widely utilized waste container (such as 7A Drum) subject to a range of free fall impact and puncture scenarios. The resulting behavior of the container is assessed, and the estimates are presented for bounding DRs from calculated breach areas for the various accident conditions considered. This paper also describes a novel multiscale constitutive model recently implemented in SIERRA/SM that simulates the fracture of brittle materials such as PuO2 and determines ARF during the fracture process. Comparisons are made between model predictions and simple bench-top experiments.
Within the framework of IEA PVPS, Task 13 aims to provide support to market actors working to improve the operation, the reliability and the quality of PV components and systems. Operational data from PV systems in different climate zones compiled within the project will help provide the basis for estimates of the current situation regarding PV reliability and performance. The general setting of Task 13 provides a common platform to summarize and report on technical aspects affecting the quality, performance, reliability and lifetime of PV systems in a wide variety of environments and applications. By working together across national boundaries we can all take advantage of research and experience from each member country and combine and integrate this knowledge into valuable summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competitive return on investment. Task 13 has so far managed to create the right framework for the calculations of various parameters that can give an indication of the quality of PV components and systems. The framework is now there and can be used by the industry who has expressed appreciation towards the results included in the high-quality reports. The IEA PVPS countries participating in Task 13 are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, Thailand, and the United States of America.
The physical processes during planet formation span a large range of pressures and temperatures. Giant impacts, such as the one that formed the Moon, achieve peak pressures of 100s of GPa. The peak shock states generate sufficient entropy such that subsequent decompression to low pressures intersects the liquid-vapor phase boundary. The entire shock-and-release thermodynamic path must be calculated accurately in order to predict the post-impact structures of planetary bodies. Forsterite (Mg2SiO4) is a commonly used mineral to represent the mantles of differentiated bodies in hydrocode models of planetary collisions. Here, we performed shock experiments on the Sandia Z Machine to obtain the density and temperature of the liquid branch of the liquid-vapor phase boundary of forsterite. This work is combined with previous work constraining pressure, density, temperature, and entropy of the forsterite principal Hugoniot. We find that the vapor curves in previous forsterite equation of state models used in giant impacts vary substantially from our experimental results, and we compare our results to a recently updated equation of state. We have also found that due to under-predicted entropy production on the principal Hugoniot and elevated temperatures of the liquid vapor phase boundary of these past models, past impact studies may have underestimated vapor production. Furthermore, our results provide experimental support to the idea that giant impacts can transform much of the mantles of rocky planets into supercritical fluids.
Evaporation of streams of liquid droplets in environments at vacuum pressures below the vapor pressure has not been widely studied. Here, experiments and simulations are reported that quantify the change in droplet diameter when a steady stream of ≈100 μm diameter drops is injected into a chamber initially evacuated to <10-8bar. In experiments, droplets fall through the center of a 0.8 m long liquid nitrogen cooled shroud, simulating infinity radiation and vapor mass flux boundary conditions. Experimentally measured changes in drop diameters vary from ≈0 to 6 μm when the initial vapor pressure is increased from 10-6 to 10-3 bar by heating the liquid. Measured diameter changes are predicted by a model based on the Hertz-Knudsen equation. One uncertainty in the calculation is the "sticking coefficient"β. Assuming a constant β for all conditions studied here, predicted diameter changes best match measurements with β≈0.3. This value falls within the range of β reported in the literature for organic liquids. Finally, at the higher vapor pressure conditions considered here, the drop stream disperses transverse to the main flow direction. This spread is attributed to forces imparted by an absolute pressure gradient produced by the evaporating stream.
We present the results of Monte Carlo simulations of the microchannel plate (MCP) response to x rays in the 250 eV to 25 keV energy range as a function of both x-ray energy and impact angle and their comparisons with the experimental results from the X8A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. Incoming x rays interact with the lead glass of the microchannel plate, producing photoelectrons. Transport of the photoelectrons is neglected in this model, and it is assumed that photoelectrons deposit all their energy at the point they are created. This deposition leads to the generation of many secondary electrons, some fraction of which diffuse to the MCP pore surface where they can initiate secondary electron cascades in the pore under an external voltage bias. X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV, and the effect of this penetration on MCP performance is studied. In agreement with past measurements, we find that the dependence of MCP sensitivity with angle relative to the pore bias changes from a cotangent dependence to angular independence and then proceeds to a secant dependence as the x-ray energy increases. We also find that with the increasing x-ray energy, the MCP gain sensitivity as a function of bias voltage decreases. The simulations also demonstrate that for x rays incident normal to the MCP surface, spatial resolution shows little dependence on the x-ray energy but degrades with the increasing x-ray energy as the angle of incidence relative to the surface normal increases. This agrees with experimental measurements. Simulation studies have also been completed for MCPs gated with a subnanosecond voltage pulse. We find that the optical gate profile width increases as the x-ray energy is increased above 5 keV, a consequence of increased x-ray penetration at energies >5 keV. Simulations of the pulsed dynamic range show that the dynamic range varies between ∼100 and 1000 depending on x-ray energy and peak voltage.
Simulation of additive manufacturing processes can provide essential insight into material behavior, residual stress, and ultimately, the performance of additively manufactured parts. In this work, we describe a new simulation based workflow utilizing both solid mechanics and fluid mechanics based formulations within the finite element software package SIERRA (Sierra Solid Mechanics Team in Sierra/SolidMechanics 4.52 User’s Guide SAND2019-2715. Technical report, Sandia National Laboratories, 2011) to enable integrated simulations of directed energy deposition (DED) additive manufacturing processes. In this methodology, a high-fidelity fluid mechanics based model of additive manufacturing is employed as the first step in a simulation workflow. This fluid model uses a level set field to track the location of the boundary between the solid material and background gas and precisely predicts temperatures and material deposition shapes from additive manufacturing process parameters. The resulting deposition shape and temperature field from the fluid model are then mapped into a solid mechanics formulation to provide a more accurate surface topology for radiation and convection boundary conditions and a prescribed temperature field. Solid mechanics simulations are then conducted to predict the evolution of material stresses and microstructure within a part. By combining thermal history and deposition shape from fluid mechanics with residual stress and material property evolutions from solid mechanics, additional fidelity and precision are incorporated into additive manufacturing process simulations providing new insight into complex DED builds.
Hot-spot shape and electron temperature (Te) are key performance metrics used to assess the efficiency of converting shell kinetic energy into hot-spot thermal energy in inertial confinement fusion implosions. X-ray penumbral imaging offers a means to diagnose hot-spot shape and Te, where the latter can be used as a surrogate measure of the ion temperature (Ti) in sufficiently equilibrated hot spots. We have implemented a new x-ray penumbral imager on OMEGA. We demonstrate minimal line-of-sight variations in the inferred Te for a set of implosions. Furthermore, we demonstrate spatially resolved Te measurements with an average uncertainty of 10% with 6 μm spatial resolution.
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process %1Cows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re < 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newtons method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Arias more advanced capabilities.
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( Re < 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newtons method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic -adaptivity and dynamic load balancing are some of Arias more advanced capabilities.
The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysics scenarios. The code suite is composed of several specialized applications which can operate either in standalone mode or coupled with each other. Arpeggio is a supported utility that enables loose coupling of the various Sierra Mechanics applications by providing access to Framework services that facilitate the coupling. More importantly Arpeggio orchestrates the execution of applications that participate in the coupling. This document describes the various components of Arpeggio and their operability. The intent of the document is to provide a fast path for analysts interested in coupled applications via simple examples of its usage.
SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services also allow the development of coupled mechanics analysis software for a massively parallel computing environment.
SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services also allow the development of coupled mechanics analysis software for a massively parallel computing environment.
The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the ASC fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the core architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.
The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the ASC fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the core architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.
The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the ASC fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the core architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.
Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verification test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test checked under mesh refinement against the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.
Austenitic stainless steels are used extensively in harsh environments, including for high-pressure gaseous hydrogen service. However, the tensile ductility of this class of materials is very sensitive to materials and environmental variables. While tensile ductility is generally insufficient to qualify a material for hydrogen service, ductility is an effective tool to explore microstructural and environmental variables and their effects on hydrogen susceptibility, to inform understanding of the mechanisms of hydrogen effects in metals, and to provide insight to microstructural variables that may improve relative performance. In this study, hydrogen precharging was used to simulate high-pressure hydrogen environments to evaluate hydrogen effects on tensile properties. Several austenitic stainless steels were considered, including both metastable and stable alloys. Room temperature and subambient temperature tensile properties were evaluated with three different internal hydrogen contents for type 304L and 316L austenitic stainless steels and one hydrogen content for XM-11. Significant ductility loss was observed for both metastable and stable alloys, suggesting the stability of the austenitic phase is not sufficient to characterize the effects of hydrogen. Internal hydrogen does influence the character of deformation, which drives local damage accumulation and ultimately fracture for both metastable and stable alloys. While a quantitative description of hydrogen-assisted fracture in austenitic stainless steels remains elusive, these observations underscore the importance of the hydrogen-defect interactions and the accumulation of damage at deformation length scales.
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refueling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates, the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved, while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However, for test with 3 and 4 bar release the concentration was overpredicted. Furthermore, a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally, a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.
Unintentional leaks at hydrogen fueling stations have the potential to form hydrogen jet flames, which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings, lot-lines, etc. The heat flux and visible flame length is well understood for releases from round nozzles, but real unintended leaks would be expected to be from higher aspect-ratio cracks. In this work, we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. Heat flux measurements from 5 radiometers were used to assess the single-point vs the multi-point methods for interpretation of heat flux sensor data, finding the axial distance of the sensor for a single-point heat flux measurement to be important. We compare the flame length and heat flux data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly, for a given mass flow under the range of conditions studied. The engineering correlations presented in this work enable the prediction of flame length and heat flux which can be used to assess risk at hydrogen fueling stations with liquid hydrogen and develop science-based separation distances for these stations.
Li, Xuefang; Chowdhury, Bikram R.; He, Qian; Christopher, David M.; Hecht, Ethan S.
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes, the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks, which would be expected to be cracks, rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation, the axis-switching phenomena was not observed, but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment.
Luminescent lanthanide decanoate nanoparticles (LnC10 NPs; Ln = Pr, Nd, Sm, Eu, Gd, Er) with spherical morphology (<100 nm) have been synthesized via a facile microwave (MWV) method using Ln(NO3)3·xH2O, ethanol/water, and decanoic acid. These hybrid nanomaterials adopt a lamellar structure consisting of inorganic Ln3+ layers separated by a decanoate anion bilayer and exhibit liquid crystalline (LC) phases during melting. The particle size, crystalline structure, and LC behavior were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (ambient and heated). Thermal analysis indicated the formation of Smectic A LC phases by LnC10 nanoparticles, with the smaller lanthanides (Ln = Sm, Gd, Er) displaying additional solid intermediate and Smectic C phases. The formation of LC phases by the smaller Ln3+ suggests that these nanoscale materials have vastly different thermal properties than their bulk counterparts, which do not exhibit LC behavior. In this work, photoluminescence spectroscopy revealed the LnC10 NPs to be highly optically active, producing strong visible emissions that corresponded to expected electronic transitions by the various Ln3+ ions. Under long-wave UV irradiation (λ = 365 nm), bright visible luminescence was observed for colloidal suspensions of Nd, Sm, Eu, Gd, and ErC10 NPs. To the best of the authors’ knowledge, this is the first reported synthesis of nanoscale metal alkanoates, the first report of liquid crystalline behavior by any decanoate of lanthanides smaller than Nd, and the first observation of strong visible luminescence by non-vitrified lanthanide alkanoates.
The conversion efficiency and phase matching bandwidth of ultrafast optical parametric amplification (OPA) are constrained by the dispersion and nonlinear coefficient of the employed crystal as well as pulse shaping effects. In our work we show that an enhancement cavity resonant with the pump seeded at the full repetition rate of the pump laser can automatically reshape the small-signal gain in optical parametric chirped-pulse amplification (OPCPA) to achieve close-to-optimal operation. This new method termed cavity-enhanced OPCPA or C-OPCPA significantly increases both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. The goal in C-OPCPA is to arrive at a condition of impedance matching at all temporal coordinates, such that, in the absence of linear losses, all the incident pump power is dissipated in the nonlinear loss element, i.e., converted to signal and idler. The use of a low finesse enhancement cavity resonant with a low average power (<1W) and a high repetition rate (78MHz) pump source is shown to achieve more than 50% conversion efficiency into signal and idler from the coupled pump in an optical parametric process, whereas an equivalent amount of pump power in a single-pass configuration leads to negligible conversion. Additionally, the gain bandwidth is extended by a factor of 3-4 beyond the phase-matching limit. Our empirical observations are corroborated by a numerical analysis of depletion optimizing the single-pass case, which assesses the underlying impedance matching that is responsible for the observed performance improvements.
A previous investigation produced data sets that can be used to benchmark the codes and best practices presently used to determine cladding temperatures and induced cooling air flows in modern horizontal dry storage systems. The horizontal dry cask simulator (HDCS) was designed to generate this benchmark data and add to the existing knowledge base. The objective of the previous HDCS investigation was to capture the dominant physics of a commercial dry storage system in a well-characterized test apparatus for a wide range of operational parameters. The close coupling between the thermal response of the canister system and the resulting induced cooling air flow rate was of particular importance. The previous investigation explored these parameters using helium backfill at 100 kPa and 800 kPa pressure as well as air backfill with a series of simulated decay heats. The helium tests simulated a horizontal dry cask storage system at normal storage conditions with either atmospheric or elevated backfill pressure, while the air tests simulated horizontal storage canisters following a complete loss of helium backfill, in which case the helium would be replaced by air. The present HDCS investigation adds to the previous investigation by exploring steady-state conditions at various stages of the loss of helium backfill from a horizontal dry cask storage system. This is achieved by using helium/air blends as a backfill in the HDCS and running a series of tests using various simulated decay heats to explore the effects of relative helium/air molar concentration on the thermal response of a simulated horizontal dry cask storage system. A total of twenty tests were conducted where the HDCS achieved steady state for various assembly powers, representative of decay heat. The power levels tested were 0.50, 1.00, 2.50, and 5.00 kW. All tests were run at 100 kPa vessel pressure. The backfill gases used in these tests are given in this report as a function of mole fraction of helium (He), balanced by air: 1.0, 0.9, 0.5, 0.1, and 0.0 He. Steady-state conditions (where the steady-state start condition is defined as where the change in temperature with respect to time for the majority of HDCS components is less than or equal to 0.3 K/h) were achieved for all test cases.
High-pressure equation of state and isentropic sound speed data for fluid silicon to pressures of 2100 GPa (21 Mbar) are reported. Principal Hugoniot measurements were performed using impedance matching techniques with α-quartz as the reference. Sound speeds were determined by time correlating imposed shock-velocity perturbations in both the sample (Si) and reference material (α-quartz). A change in shock velocity versus particle velocity (us-up) slope on the fluid silicon principal Hugoniot is observed at 200 GPa. Density functional theory based quantum molecular dynamics simulations suggest that both an increase in ionic coordination and a 50% increase in average ionization are coincident with this experimentally observed change in slope.
Han, Kee S.; Hahn, Nathan H.; Zavadil, Kevin R.; Jaegers, Nicholas R.; Chen, Ying; Hu, Jian Z.; Murugesan, Vijayakumar; Mueller, Karl T.
Most multivalent secondary batteries have employed electrolytes composed of cyclic ether solvents such as tetrahydrofuran or linear glycol ether solvents (glymes) such as 1,2-dimethoxyethane (G1). A robust understanding of multivalent cation solvation tendencies in these classes of solvents provides insight into corresponding structure-property relationships which, in turn, promotes the design and discovery of improved electrolytes. In this work, our goal is to systematically address how electrolyte constituent properties, namely, ether solvent structure and dication size, direct the solvation interactions of divalent electrolytes and their resultant properties. This study utilizes pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy in conjunction with Raman spectroscopy and ionic conductivity measurements to elucidate the preferential interactions between multivalent cations, anions, and solvent molecules along with their correlated ion dynamics. These investigations incorporate two representative divalent cations (Ca2+ and Zn2+) as well as two ethereal solvent representatives from both the cyclic ether and glyme structural classes. The results reveal that anions coordinate more readily with divalent cations in cyclic ethers than in glymes. Furthermore, the coordination of the anions with Ca2+, i.e., contact-ion pair (CIP) formation is more pronounced than with Zn2+ in a glyme solvent of limited chain length (G1), providing insight into cation size effects that are important for translating solvation behavior across various multivalent electrolytes. Importantly, we find that specific anion coordination is more strongly controlled by solvent structure than by salt concentration in the practical range of 0.1-0.5 M. However, simply reducing these inner-sphere inter-ionic interactions by changing solvent structure does not necessarily de-correlate ionic motion. Instead, concentration-dependent changes in molar ionic conductivity suggest that second-shell interactions, i.e., solvent separated ion pairs (SSIPs), are prevalent in these electrolytes and that the solution dielectric constant, which is increased by the presence of dipolar ion pairs, is critical for controlling these interactions. These findings thus provide a basis for understanding the physical chemistry of multivalent battery electrolytes.
Two events of magnitude (mb) 3.6–3.8 occurred in southern North Korea (NK) on 27 June 2019 and 11 May 2020. Although these events were located ~330–400 km from the known nuclear test site, the fact that they occurred within the territory of NK, a country with a recent history of underground nuclear tests, made them events of interest for the monitoring community. In this work, we used P/Lg ratios from regional stations to categorize seismic events that occurred in NK from 2006 to May 2020, including these two recent events, the six declared NK nuclear tests, and the cavity collapse and triggered earthquakes that followed the 3 September 2017 nuclear explosion. We were able to separate the cavity collapse from the population of nuclear explosions. However, based on P/Lg ratios, the distinction between the earthquakes and the cavity collapse is ambiguous. The performed discriminant analyses suggest that combining Pg/Lg and Pn/Lg ratios results in improved discriminant power compared with any of the ratio types alone. We used the two ratio types jointly in a quadratic discriminant function and successfully classified the six declared nuclear tests and the triggered earthquakes that followed the September 2017 explosion. Our analyses also confirm that the recent southern events of June 2019 and May 2020 are both tectonic earthquakes that occurred naturally.
We present a methodology based on the Néel model to build a classical spin-lattice Hamiltonian for cubic crystals capable of describing magnetic properties induced by the spin-orbit coupling like magnetocrystalline anisotropy and anisotropic magnetostriction, as well as exchange magnetostriction. Taking advantage of the analytical solutions of the Néel model, we derive theoretical expressions for the parametrization of the exchange integrals and Néel dipole and quadrupole terms that link them to the magnetic properties of the material. This approach allows us to build accurate spin-lattice models with the desired magnetoelastic properties. We also explore a possible way to model the volume dependence of magnetic moment based on the Landau energy. This feature allows us to consider the effects of hydrostatic pressure on the saturation magnetization. We apply this method to develop a spin-lattice model for BCC Fe and FCC Ni, and we show that it accurately reproduces the experimental elastic tensor, magnetocrystalline anisotropy under pressure, anisotropic magnetostrictive coefficients, volume magnetostriction, and saturation magnetization under pressure at zero temperature. This work could constitute a step towards large-scale modeling of magnetoelastic phenomena.
Luo, Chaoqian; Chung, Christopher; Traugutt, Nicholas A.; Yakacki, Christopher M.; Long, Kevin N.; Yu, Kai
Polymer foams are an essential class of lightweight materials used to protect assets against mechanical insults, such as shock and vibration. Two features are important to enhance their energy absorption characteristics: the foam structure and the matrix phase mechanical behavior. This study investigates novel approaches to control both of these features to enhance the energy absorption capability of flexible lattice foams. First, we consider 3D printing via digital light processing (DLP) as a method to control the foam mesostructure across a suite of periodic unit cells. Second, we introduce an additional energy dissipation mechanism in the solid matrix phase material by 3D printing the lattice foams with polydomain liquid crystal elastomer (LCE), which undergo a mechanically induced phase transition under large strains. This phase transition is associated with LC mesogen rotation and alignment and provides a second mechanism for mechanical energy dissipation in addition to the viscoelastic relaxation of the polymer network. We contrast the 3D printed LCE lattices with conventional, thermomechanically near-equivalent elastomer lattice foams to quantify the energy-absorbing enhancement the LCE matrix phase provides. Under cyclic quasi-static uniaxial compression conditions, the LCE lattices show dramatically enhanced energy dissipation in uniaxial compression compared to the non-LCE equivalent foams printed with a commercially available photocurable elastomer resin. The lattice geometry also plays a prominent role in determining the energy dissipation ratio between the LCE and non-LCE foams. We show that when increasing the lattice connectivity, the foam deformation transitions from bending-dominated to stretching-dominated deformations, which generates higher axial strains in the struts and higher energy dissipation in the lattice foam, as stretching allows greater mesogen rotation than bending. The LCE foams demonstrate superior energy absorption during the repeated dynamic loading during drop testing compared with the non-LCE equivalent foams, demonstrating the potential of LCEs to enhance physical protection systems against mechanical impact.
Erosion of the beryllium first wall material in tokamak reactors has been shown to result in transport and deposition on the tungsten divertor. Experimental studies of beryllium implantation in tungsten indicate that mixed W–Be intermetallic deposits can form, which have lower melting temperatures than tungsten and can trap tritium at higher rates. To better understand the formation and growth rate of these intermetallics, we performed cumulative molecular dynamics (MD) simulations of both high and low energy beryllium deposition in tungsten. In both cases, a W–Be mixed material layer (MML) emerged at the surface within several nanoseconds, either through energetic implantation or a thermally-activated exchange mechanism, respectively. While some ordering of the material into intermetallics occurred, fully ordered structures did not emerge from the deposition simulations. Targeted MD simulations of the MML to further study the rate of Be diffusion and intermetallic growth rates indicate that for both cases, the gradual re-structuring of the material into an ordered intermetallic layer is beyond accessible MD time scales(≤1 μs). However, the rapid formation of the MML within nanoseconds indicates that beryllium deposition can influence other plasma species interactions at the surface and begin to alter the tungsten material properties. Therefore, beryllium deposition on the divertor surface, even in small amounts, is likely to cause significant changes in plasma-surface interactions and will need to be considered in future studies.
Senanayake, Manjula; Aryal, Dipak; Grest, Gary S.; Perahia, Dvora
Ionizable block copolymers with distinctive block characteristics display the diversity crucial for the design of macromolecules for targeted applications. In contrast to van der Waals copolymers, their interfaces, which are critical to their function, consist of nanodomains, each of a different nature and thus unique interfacial behavior. Here, the interfacial response of a symmetric block copolymer with a sulfonated polystyrene polyelectrolyte center, tethered to polyethylene-r-propylene and terminated by poly(t-butyl styrene) is probed as polymer films are exposed to three polar solvents, water, propanol, and tetrahydrofuran (THF), using molecular dynamics simulations. Each of the solvents captures a distinctive interaction with the individual blocks. We find that at the film boundary, the interfacial response is initially dominated by that of the hydrophobic blocks to all solvents. At later times, the solvent distribution among the blocks, where water molecules associate predominantly with the sulfonated groups and propanol and THF reside at multiple different sites, determines the chemical composition and the polymer conformation at the interface. Overall, these simulations provide the first direct molecular insight into the interfacial response of ionizable copolymers.
Parisi, Daniele; Costanzo, Salvatore; Jeong, Youncheol; Ahn, Junyoung; Chang, Taihyun; Vlassopoulos, Dimitris; Halverson, Jonathan D.; Kremer, Kurt; Ge, Ting; Rubinstein, Michael; Grest, Gary S.; Srinin, Watee; Grosberg, Alexander Y.
Steady-state shear viscosity (γ˙) of unconcatenated ring polymer melts as a function of the shear rate γ˙ is studied by a combination of experiments, simulations, and theory. Experiments using polystyrenes with Z ≈ 5 and Z ≈ 11 entanglements indicate weaker shear thinning for rings compared to linear polymers exhibiting power law scaling of shear viscosity ∼γ˙-0.56 ± 0.02, independent of chain length, for Weissenberg numbers up to about 102. Nonequilibrium molecular dynamics simulations using the bead-spring model reveal a similar behavior with ∼γ˙-0.57 ± 0.08 for 4 ≤ Z ≤ 57. Viscosity decreases with chain length for high γ˙. In our experiments, we see the onset of this regime, and in simulations, which we extended to Wi ∼104, the nonuniversality is fully developed. In addition to a naive scaling theory yielding for the universal regime ∼γ˙-0.57, we developed a novel shear slit model explaining many details of observed conformations and dynamics as well as the chain length-dependent behavior of viscosity at large γ˙. The signature feature of the model is the presence of two distinct length scales: the size of tension blobs and much larger thickness of a shear slit in which rings are self-consistently confined in the velocity gradient direction and which is dictated by the size of a chain section with relaxation time 1/γ˙. These two length scales control the two normal stress differences. In this model, the chain length-dependent onset of nonuniversal behavior is set by tension blobs becoming as small as about one Kuhn segment. This model explains the approximate applicability of the Cox-Merz rule for ring polymers.
Mistry, Aashutosh; Franco, Alejandro A.; Cooper, Samuel J.; Roberts, Scott A.; Viswanathan, Venkatasubramanian
Electrochemical systems function via interconversion of electric charge and chemical species and represent promising technologies for our cleaner, more sustainable future. However, their development time is fundamentally limited by our ability to identify new materials and understand their electrochemical response. To shorten this time frame, we need to switch from the trial-and-error approach of finding useful materials to a more selective process by leveraging model predictions. Machine learning (ML) offers data-driven predictions and can be helpful. Herein we ask if ML can revolutionize the development cycle from decades to a few years. We outline the necessary characteristics of such ML implementations. Instead of enumerating various ML algorithms, we discuss scientific questions about the electrochemical systems to which ML can contribute.
We present the design, fabrication, and initial characterization of a CMOS compatible, ultra-high bandwidth, bulk-micro machined, optomechanical accelerometer. Displacement detection is achieved via a SiN integrated photonics Mach-Zehnder interferometer (MZI) fabricated on the surface of the device that is optomechanically coupled to acceleration-induced deformation of the accelerometer's proof mass tethers. The device is designed to measure vibrations at microsecond timescales with high dynamic range for the characterization of shock dynamics.
Kang, Jin G.; Jang, Hyejin; Ma, Jun; Yang, Qun; Hattar, Khalid M.; Diao, Zhu; Yuan, Renliang; Zuo, Jianmin; Sinha, Sanjiv; Cahill, David G.; Braun, Paul V.
While there is no known fundamental lower limit to the thermal conductivity of a material, the lowest thermal conductivities are typically found in amorphous and strongly disordered materials, not highly crystalline materials. Here, we demonstrate a surprising nanostructuring route to ultralow thermal conductivity in a large-unit-cell oxide crystal (Fe3O4) containing close-packed nanoscale pores. The electrical conductivity of this material reduces by a factor of 5 relative to dense v, independent of pore size. In contrast, thermal conductivity has a strong dependence on pore size with a factor of 40 of suppression relative to dense Fe3O4 for 40 nm pores vs a factor of 5 for 500 nm pores. The matrix thermal conductivity of Fe3O4 containing 40 nm pores falls below the predicted minimum thermal conductivity by a factor of 3. Finally, we attribute this to strong acoustic phonon scattering and intrinsically limited contributions to thermal conductivity from optical phonons with small dispersion.
Mishra, Piyush; Fritz, Sean M.; Herbers, Sven; Mebel, Alexander M.; Zwier, Timothy S.
The flash pyrolysis oftrans3-pentenenitrile (3-PN, CH3-CH-CH-CH2-CN) was studied by combining the results of VUV photoionization mass spectra with broadband microwave spectra recorded as a function of the temperature of the pyrolysis tube. The two separated functional groups (vinyl and nitrile) open up isomerization as an initial step in competition with unimolecular dissociation. Primary products were detected by keeping the 3-PN concentration low and limiting reaction times to the traversal time of the gas in the pyrolysis tube (100 μs). The reaction is quenched and products are cooled by expansion into vacuum before interrogation over the 8-18 GHz region using chirped-pulse broadband methods. 118 nm VUV photoionization of the same reaction mixture provides a means of detecting all products with ionization potentials below 10.5 eV with minimal fragmentation. These results are combined with a detailed computational investigation of the C5H7N and related potential energy surfaces, leading to a consistent picture of the unimolecular decomposition of 3-PN. Loss of two H-atoms to form a 79 amu product is proven from its microwave transitions to containtrans-Z-2,4-pentadienenitrile, while no pyridine is observed. Methyl loss, HCN loss, and breaking the central C(2)-C(3) bond all occur following isomerization of the position of the double bond, thereby opening up low-energy pathways to these decomposition channels.
Nordin, L.; Petluru, P.; Muhowski, A.J.; Shaner, Eric A.; Wasserman, D.
We demonstrate all-epitaxial structures capable of supporting short- and long-range surface plasmon polariton (SRSPP and LRSPP) modes in the long-wave infrared region of the electromagnetic spectrum. The SRSPP and LRSPP modes are bound to the interfaces of a buried heavily doped (n + +) semiconductor layer and surrounding quantum-engineered type-II superlattice (T2SL) materials. The surrounding T2SLs are designed to allow optical transitions across the frequency dispersion of the SPP modes. We map the SPP dispersion in our structure using grating-coupled angle- and polarization-dependent reflection and photoluminescence spectroscopy. The epitaxial structures are analytically described using a simplified three-layer system (T 2 SL / n + + / T 2 SL) and modeled using rigorous coupled wave analysis with excellent agreement to our experimental results. The presented structures offer the potential to serve as long-range interconnects or waveguides in all-epitaxial plasmonic/optoelectronic systems operating in the long-wave infrared.
This report describes plans for dust sampling and analysis for the multi-year Canister Deposition Field Demonstration. The demonstration will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters, which will be stored at an ISFSI site in Advanced Horizontal Storage Modules. One canister will be unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, the size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Sampling locations on the canister surface will nominally include 25 locations, corresponding to 5 circumferential locations at each of the 5 longitudinal locations. At each sampling location, a 2x2 sampling grid (containing 4 sample cells) will be painted onto the metal surface. During each sampling campaign, two samples at each sampling location will be collected, in a specific routine to measure both periodic (yearly or bi-yearly) and cumulative deposition rates. For each sample, a wet and a dry sample will be collected. Wet samples will be analyzed to determine the composition of the soluble salt fraction and to estimate salt loading per unit area. Dry samples will be analyzed to assess particle size, morphology, mineralogy, and identity (e.g. for floral/faunal fragments). The data generated by this proposed sampling plan will provide detailed information on dust and salt aerosol deposits on spent nuclear fuel canister surfaces. The anticipated results include information regarding particle compositions, size distributions, and morphologies, in addition to particle deposition rates as a function of canister surface location, orientation, time, and temperature. The information gathered during the Canister Deposition Field Demonstration is critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking on SNF dry storage canisters
High and low salinity water flooding are common oil recovery processes performed in the oil fields for extracting crude oil from the reservoir. These processes are often performed sequentially, naturally establishing non-uniform salinity in the porous subsurface. In this article, we investigate oil transport in porous media induced by salinity change upon flooding with high and low salinity water. As we observe a large number of impervious dead-ends from three-dimensional imaging of the actual reservoir, we identify that these areas play an important role in oil recovery where the oil transport is governed by the salinity change rather than hydrodynamics. The salinity gradients induced upon high salinity water flooding provide pathways to enhance the transport of oil drops trapped in the dead-end regions via non-equilibrium effects. However, above a critical salinity, we observe a rapid aggregation of drops that lead to the complete blockage of the pore space, thereby inhibiting oil recovery. We also find that, at an intermediate salinity where the drop aggregation is modest, the aggregation rather promotes the oil recovery. Our observations suggest that there exist optimal salinity conditions for maximizing oil recovery during chemical flooding.
The fillers research and development (R&D) program, mostly experimental, is part of a broader R&D program that includes new process modeling and performance assessment of criticality effects and the overall importance of criticality to repository performance (consequence screening). A literature research and consultation effort with experts by Hardin and Brady (2018) identified several potentially effective and workable filler materials including cements (primarily phosphate based), moltenmetal alloys, and low-temperature glasses. Filler attributes were defined, and the preliminary lists were compared qualitatively. Further comparative analysis will be done (e.g., cost estimates) after experimental screening has narrowed the list of alternatives. The following cement filler compositions were selected for experimental development work and accelerated testing in FY20: Aluminum phosphate cements (APCs); more specifically aluminum oxide / aluminum phosphate (Al2O3 / AlPO4) cements in which Al2O3 serves as the filler material bound by an AlPO4 binder formed by the reaction of Al2O3 with H3PO4; Calcium phosphate cements (CPCs); more specifically composed of pure or nearly pure hydroxyapatite or HAP (Ca5(PO4)3(OH)); Wollastonite phosphate cements (WPC), specifically wollastonite and aluminum or calcium aluminum phosphates in which CaSiO3 serves as the filler material and the phosphate serves as the binder. The FY20 effort focused on the optimization of compositions and subsequent processing of these three materials to achieve dense and well-consolidated monolithic samples with 30 to 40% porosity and permeabilities of 1 millidarcy. At the close of this progress report the aluminum phosphate cements (APCs) and the wollastonite phosphate cements (WPCs) appear to show the most promise for continued development. Less progress has been made with the calcium phosphate cements (CPCs); their slurry viscosities are high (and difficult to measure) and they exhibit relatively short cure times of 2 to 3 hours with concomitant and excessive volatile (e.g. CO2) generation.
We experimentally show that the thermal conductance across confined solid-solution crystalline thin films between parent materials does not necessarily lead to an increase in thermal resistances across the thin-film geometries with increasing film thicknesses, which is counterintuitive to the notion that adding a material serves to increase the total thermal resistance. Confined thin epitaxial Ca0.5Sr0.5TiO3 solid-solution films with systematically varying thicknesses in between two parent perovskite materials of calcium titanate and (001)-oriented strontium titanate are grown, and thermoreflectance techniques are used to accurately measure the thermal boundary conductance across the confined solid-solution films, showing that the thermal resistance does not substantially increase with the addition of solid-solution films with increasing thicknesses from μ1 to μ10 nm. Contrary to the macroscopic understanding of thermal transport where adding more material along the heat propagation direction leads to larger thermal resistances, our results potentially offer experimental support to the computationally predicted concept of vibrational matching across interfaces. This concept is based on the fact that a better match in the available heat-carrying vibrations due to an interfacial layer can lead to lower thermal boundary resistances, thus leading to an enhancement in thermal boundary conductance across interfaces driven by the addition of a thin "vibrational bridge"layer between two solids.
The fillers research and development (R&D) program, mostly experimental, is part of a broader R&D program that includes new process modeling and performance assessment of criticality effects and the overall importance of criticality to repository performance (consequence screening). A literature research and consultation effort with experts by Hardin and Brady (2018) identified several potentially effective and workable filler materials including cements (primarily phosphate based), moltenmetal alloys, and low-temperature glasses. Filler attributes were defined, and the preliminary lists were compared qualitatively. Further comparative analysis will be done (e.g., cost estimates) after experimental screening has narrowed the list of alternatives. The research presented here is focused Sandia’s efforts for the development of phosphate-based cement fillers. Molten metal filler research is an ongoing activity at Oak Ridge National Laboratories and is not discussed herein. After the completion of the FY20 research effort the following cement filler compositions were selected for further experimental development work and advanced testing in FY21: 1. Aluminum phosphate cements (APCs); more specifically aluminum oxide / aluminum phosphate (Al2O3 / AlPO4) cements in which Al2O3 serves as the filler material bound by an AlPO4 binder formed by the reaction of Al2O3 with various phosphate sources; 2. Wollastonite phosphate cements (WPCs), specifically wollastonite and aluminum or calcium aluminum phosphates in which CaSiO3 serves as the filler material bound by a calcium phosphate that serves as the binder; and 3. Calcium aluminate phosphate cements (CAPCs) specifically grossite (CaAl4O7) and hibonite (CaAl11O18) fillers bound by an aluminum phosphate that serves as the binder. This effort focused on the optimization and subsequent processing of these three cements to achieve dense and well-consolidated monolithic samples. Upon completion of the FY21 effort the aluminum phosphate cements (APCs) and the calcium aluminate phosphate cements (CAPCs) show the most promise for advanced testing and scale up. We will begin the work in FY22 focused on testing the performance of these two cements in small scale DPCs as well as advanced materials testing to evaluate cement performance under expected radiation doses and representative post-closure geochemical environments.
The natural convection boundary layer (${\delta }_{nc}$) and its influence on cathodic current in a galvanic couple under varying electrolytes as a function of concentration (1 - 5.3 M NaCl) and temperature (25 °C-45 °C) were understood. Polarization scans were obtained under quiescent conditions and at defined boundary layer thicknesses using a rotating disk electrode on platinum and stainless steel 304L (SS304L); these were combined to determine ${\delta }_{nc}.$ With increasing chloride concentration and temperature, ${\delta }_{nc}$ decreased. Increased mass transport (Sherwood number) results in a decrease in ${\delta }_{nc},$ providing a means to predict this important boundary. Using Finite Element Modeling, the cathodic current was calculated for an aluminum alloy/SS304L galvanic couple as a function of water layer (WL) thickness and cathode length. Electrolyte domains were delineated, describing (i) dominance of ohmic resistance over mass transport under thin WL, (ii) the transition from thin film to bulk conditions at ${\delta }_{nc},$ and (iii) dominance of mass transport under thick WL. With increasing chloride concentration, cathodic current decreased due to decreases in mass transport. With increasing temperature, increased cathodic current was related to increases in mass transport and solution conductivity. This study has implications for sample sizing and corrosion prediction under changing environments.
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.
This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.0 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and $\textit{J}$-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.
This is an addendum to the Sierra/SolidMechanics 5.0 User’s Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State’s International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 5.0 User’s Guide should be referenced for most general descriptions of code capability and use.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.
Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra / SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra / SM test suite that are not included in this manual.
Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional finite element analysis code for solids and structures subjected to extensive contact and large deformations, encompassing explicit and implicit dynamic as well as quasistatic loading regimes. This document supplements the primary Sierra/SM 5.0 User’s Guide, describing capabilities specific to Goodyear analysis use cases, including additional implicit solver options, material models, finite element formulations, and contact settings.
Thermally activated batteries undergo a series of coupled physical changes during activation that influence battery performance. These processes include energetic material burning, heat transfer, electrolyte phase change, capillary-driven two-phase porous flow, ion transport, electrochemical reactions, and electrical transport. Several of these processes are strongly coupled and have a significant effect on battery performance, but others have minimal impact or may be suitably represented by reduced-order models. Assessing the relative importance of these phenomena must be based on comparisons to a high-fidelity model including all known processes. In this work, we first present and demonstrate a high-fidelity, multi-physics model of electrochemical performance. This novel multi-physics model enables predictions of how competing physical processes affect battery performance and provides unique insights into the difficult-to-measure processes that happen during battery activation. We introduce four categories of model fidelity that include different physical simplifications, assumptions, and reduced-order models to decouple or remove costly elements of the simulation. Using this approach, we show an order-of-magnitude reduction in computational cost while preserving all design-relevant quantities of interest within 5 percent. The validity of this approach and these model reductions is demonstrated by comparison between results from the full fidelity model and the different reduced models.
Lanthanide elements have well-documented similarities in their chemical behavior, which make the valuable trivalent lanthanide cations (Ln3+) particularly difficult to separate from each other in water. In this work, we applyab initiomolecular dynamics simulations to compare the free energies (ΔGads) associated with the adsorption of lanthanide cations to silica surfaces at a pH condition where SiO−groups are present. The predicted ΔGadsfor lutetium (Lu3+) and europium (Eu3+) are similar within statistical uncertainties; this is in qualitative agreement with our batch adsorption measurements on silica. This finding is remarkable because the two cations exhibit hydration free energies (ΔGhyd) that differ by >2 eV, different hydration numbers, and different hydrolysis behavior far from silica surfaces. We observe that the similarity in Lu3+and Eu3+ΔGadsis the result of a delicate cancellation between the difference in Eu3+and Lu3+hydration (ΔGhyd), and their difference in binding energies to silica. We propose that disrupting this cancellation at the two end points, either for adsorbed or completely desorbed lanthanides (e.g.,viananoconfinment or mixed solvents), will lead to effective Ln3+separation.
Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approachis a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined inhydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on thesilica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. Thisappears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated withtheweaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
While magnetized turbulence is ubiquitous in many astrophysical and terrestrial systems, our understanding of even the simplest physical description of this phenomena, ideal magnetohydrodynamic (MHD) turbulence, remains substantially incomplete. As such, in this work we highlight the shortcomings of existing theoretical and phenomenological descriptions of MHD turbulence that focus on the joint (kinetic and magnetic) energy fluxes and spectra by demonstrating that treating these quantities separately enables fundamental insights into the dynamics of MHD turbulence. This is accomplished through the analysis of the scale-wise energy transfer over time within an implicit large eddy simulation of subsonic, super-Alfvénic MHD turbulence. Our key finding is that the kinetic energy spectrum develops a scaling of approximately k–4/3 in the stationary regime as magnetic tension mediates large-scale kinetic to magnetic energy conversion and significantly suppresses the kinetic energy cascade. This motivates a reevaluation of existing MHD turbulence theories with respect to a more differentiated modeling of the energy fluxes.
The detection of special nuclear materials (SNM) requires the understanding of nuclear signatures that allow the discrimination against background. In particular, understanding neutron background characteristics such as count rates and energies and their correlations with environmental conditions and surroundings of measurement locations is important in enhancing SNM detection capabilities. The Mobile Imager of Neutrons for Emergency Responders (MINER) was deployed for 8 weeks in downtown San Francisco (CA) to study such neutron background characteristics in an urban environment. Of specific interest was the investigation of the impact of surrounding buildings on the neutron background count rates and to answer the question whether buildings act as absorber of neutrons or as sources via the so-called ship effect. MINER consists of 16 liquid scintillator detector elements and can be operated as a neutron spectrometer, as a neutron imager, or simply as a counter of fast neutrons. As expected, the neutron background rate was found to be inversely proportional to the atmospheric pressure. In the energy range where MINER is most sensitive, approximately 1–10 MeV, it was found that the shape of the detected background spectrum is similar to that of a detected fission spectrum, indicating the limited discrimination power of the neutron energy. The similarities between the detected background neutron spectrum and fission sources makes it difficult to discriminate SNM from background based solely on the energies observed. The images produced using maximum likelihood expectation maximization revealed that neutrons preferentially are coming from areas in the environment that have open sky, indicating that the surrounding buildings act as absorbers of neutrons rather than sources as expected by the ship effect. The inherent properties of a neutron scatter camera limit the achievable image quality and the effective deployment to systematically map neutron background signatures due to the low count rate.
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User’s Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user’s notes and of course the material in the open literature.
This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.
The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. Here, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ∼0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.
Graphite fluoride (CFx) cathodes coupled with lithium anodes yield one of the highest theoretical specific capacities (>860 mAh/g) among primary batteries. In practice, the observed discharge voltage (∼2.5 V) is significantly lower than thermodynamic limits (>4.5 V), the discharge rate is low, and so far Li/CFx has only been used in primary batteries. Understanding the discharge mechanism at atomic length scales will improve practical CFx energy density, rate capability, and rechargeability. So far, purely experimental techniques have not identified the correct discharge mechanism or explained the discharge voltage. We apply density functional theory calculations to demonstrate that a CFx-edge propagation discharge mechanism based on lithium insertion at the CF/C boundary in partially discharged CFx exhibits a voltage range of 2.5 to 2.9 V - depending on whether solvent molecules are involved. The voltages and solvent dependence agree with our discharge and galvanostatic intermittent titration technique measurements. The predicted discharge kinetics are consistent with CFx operations. Finally, we predict some Li/CFx rechargeability under the application of high potentials, along a charging pathway different from that of discharge. Our work represents a general, quasi-kinetic framework to understand the discharge of conversion cathodes, circumventing the widely used phase diagram approach which most likely does not apply to Li/CFx because equilibrium conditions are not attained in this system.
Ramakrishna, Kushal; Cangi, Attila; Dornheim, Tobias; Baczewski, Andrew D.; Vorberger, Jan
The theoretical understanding of plasmon behavior is crucial for an accurate interpretation of inelastic scattering diagnostics in many experiments. We highlight the utility of linear response time-dependent density functional theory (LR-TDDFT) as a first-principles framework for consistently modeling plasmon properties. We provide a comprehensive analysis of plasmons in aluminum from ambient to warm dense matter conditions and assess typical properties such as the dynamical structure factor, the plasmon dispersion, and the plasmon lifetime. We compare our results with scattering measurements and with other TDDFT results as well as models such as the random phase approximation, the Mermin approach, and the dielectric function obtained using static local field corrections of the uniform electron gas parametrized from path-integral Monte Carlo simulations. We conclude that results for the plasmon dispersion and lifetime are inconsistent between experiment and theories and that the common practice of extracting and studying plasmon dispersion relations is an insufficient procedure to capture the complicated physics contained in the dynamic structure factor in its full breadth.
Fields, Shelby S.; Olson, David H.; Jaszewski, Samantha T.; Fancher, Chris M.; Smith, Sean W.; Dickie, Diane A.; Esteves, Giovanni E.; Henry, Michael D.; Davids, Paul D.; Hopkins, Patrick E.; Ihlefeld, Jon F.
The elastic moduli of amorphous and crystalline atomic layer-deposited Hf1-xZrxO2 (HZO, x = 0, 0.31, 0.46, 0.79, 1) films prepared with TaN electrodes on silicon substrates were investigated using picosecond acoustic measurements. The moduli of the amorphous films were observed to increase between 211 ± 6 GPa for pure HfO2 and 302 ± 9 GPa for pure ZrO2. In the crystalline films, it was found that the moduli increased upon increasing the zirconium composition from 248 ± 6 GPa for monoclinic HfO2 to 267 ± 9 GPa for tetragonal ZrO2. Positive deviations from this increase were observed for the Hf0.69Zr0.31O2 and Hf0.54Zr0.46O2 compositions, which were measured to have moduli of 264 ± 8 GPa and 274 ± 8 GPa, respectively. These two compositions contained the largest fractions of the ferroelectric orthorhombic phase, as assessed from polarization and diffraction data. The biaxial stress states of the crystalline films were characterized through sin2(ψ) x-ray diffraction analysis. The in-plane stresses were all found to be tensile and observed to increase with the increasing zirconium composition, between 2.54 ± 0.6 GPa for pure HfO2 and 5.22 ± 0.5 GPa for pure ZrO2. The stresses are consistent with large thermal expansion mismatches between the HZO films and silicon substrates. These results demonstrate a device-scale means to quantify biaxial stress for investigation on its effect on the ferroelectric properties of hafnia-based materials.
In this paper we present an alternative approach to the representation of simulation particles for unstructured electrostatic and electromagnetic PIC simulations. In our modified PIC algorithm we represent particles as having a smooth shape function limited by some specified finite radius, r0. A unique feature of our approach is the representation of this shape by surrounding simulation particles with a set of virtual particles with delta shape, with fixed offsets and weights derived from Gaussian quadrature rules and the value of r0. As the virtual particles are purely computational, they provide the additional benefit of increasing the arithmetic intensity of traditionally memory bound particle kernels. The modified algorithm is implemented within Sandia National Laboratories' unstructured EMPIRE-PIC code, for electrostatic and electromagnetic simulations, using periodic boundary conditions. We show results for a representative set of benchmark problems, including electron orbit, a transverse electromagnetic wave propagating through a plasma, numerical heating, and a plasma slab expansion. In this work, good error reduction across all of the chosen problems is achieved as the particles are made progressively smoother, with the optimal particle radius appearing to be problem-dependent.
Invited for this month's cover is the joint redox flow battery team from Sandia and Los Alamos National Laboratories. The cover image shows the stylized components of a redox flow battery (RFB) in the foreground, with renewable sources of energy generation in the background. The Review itself is available at 10.1002/cssc.202002354.
This article presents a global prioritization methodology that evaluates the relative risks of non-state actor acquisition of materials that could be used in chemical, biological, radiological, nuclear and high explosive Weapons of Mass Destruction (WMD) from the country’s relevant infrastructure. Prioritization is based on three domains: 1. Assessing relative scale of materials in each country, 2. The country’s corresponding security posture, and 3. The presence of threat actors. The output is a list of countries prioritized from greatest risk to least. Rather than providing an overall 1 to N ranking, however, the results are placed into tiers based upon their natural groupings within the three domains. The countries in the highest tiers are flagged as potential US national security concern; those scoring in the middle and at the bottom are flagged as posing lower US national security concern. A systematic approach assesses each country by leveraging many disciplines, such as risk and decision analysis, as well as expert judgement. A quantitative value model based on Multi-Attribute Value Theory (MAVT) organizes the objectives scoring criteria into a value tree using lessons learned from previous studies, published literature, and expert judgement. The article presents the prioritization categories and corresponding value model scoring criteria to include measurement type, weight, range, and value preference. Country names and data are notional in order to share the details on the underlying methodology and model without identification of actual security risks. A deliberative process addresses factors external to the model and scrutinizes inputs, methodology, model, and results.
This presentation concludes in situ computation enables new approaches to linear algebra problems which can be both more effective and more efficient as compared to conventional digital systems. Preconditioning is well-suited to analog computation due to the tolerance for approximate solutions. When combined with prior work on in situ MVM for scientific computing, analog preconditioning can enable significant speedups for important linear algebra applications.
An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home-and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.
Laser powder bed fusion (LPBF) additive manufacturing (AM) offers a variety of advantages over traditional manufacturing, however its usefulness for manufacturing of high-performance components is currently hampered by internal defects (porosity) created during the LPBF process that have an unknown impact on global mechanical performance. By inducing porosity distributions through variations in print energy density and inspecting the resulting tensile samples using computed tomography, nearly 50,000 pores across 75 samples were identified. Porosity characteristics were quantitatively extracted from inspection data and compared with mechanical properties to understand the strength of relationships between porosity and global tensile performance. Useful porosity characteristics were identified for prediction of part performance. Results indicate that ductility and strain at ultimate tensile strength are the global tensile properties most significantly impacted by porosity and can be predicted with reasonable accuracy using simple porosity shape descriptors such as volume, diameter, and surface area. Moreover, it was found that the largest pores influenced behavior most significantly. Specifically, pores in excess of 125 µm in diameter were found to be a sufficient threshold for property estimation. These results establish an initial understanding of the complex defect-performance relationship in AM 316L stainless steel and can be leveraged to develop certification standards and improve confidence in part quality and reliability for the broader set of engineering alloys.
Joint and marginal distributions in the frequency, direction, and time domain are employed to demonstrate their value for wave energy resource characterization when full spectra are available. Insights gained through analysis of these distributions support wave energy converter concept design, operation and maintenance. Spatial trends in the wave energy resource and contributing wave energy systems along the continental shelf of the West Coast of the United States are investigated using the most recent two-dimensional wave spectra measurements at four buoys over an eleven year period (2008 to 2018). Resource hot spots and dominant resolved energy resource bands in the frequency-direction-time domain are delineated. Resource attributes, including frequency and directional spreading, and seasonal variability, are characterized using joint distributions and marginal distributions of wave power spectra. North Pacific westerly swells in the winter season, augmented by Aleutian low-pressure southwesterly swells, are the principal suppliers of the dominant resource and main drivers influencing resource attributes. The modification of these systems southward, especially the North Pacific westerly swells, explains the observed spatial resource trends. The dominant resource wave period shifts two seconds to higher wave periods, thirty degrees in the dominant direction band to a more northward orientation, and forward by one month.
The inductively driven transmission line (IDTL) is a miniature current-carrying device that passively couples to fringe magnetic fields in the final power feed on the Z Pulsed Power Facility. The IDTL redirects a small amount of Z's magnetic energy along a secondary path to ground, thereby enabling pulsed power diagnostics to be driven in parallel with the primary load for the first time. IDTL experiments and modeling presented here indicate that IDTLs operate non-perturbatively on Z and that they can draw in excess of 150 kA of secondary current, which is enough to drive an X-pinch backlighter. Additional experiments show that IDTLs are also capable of making cleaner, higher-fidelity measurements of the current flowing in the final feed.
We present a fully discrete approximation technique for the compressible Navier–Stokes equations that is second-order accurate in time and space, semi-implicit, and guaranteed to be invariant domain preserving. The restriction on the time step is the standard hyperbolic CFL condition, i.e. τ≲O(h)∕V where V is some reference velocity scale and h the typical meshsize.
We have commissioned a new time-resolved, x-ray imaging diagnostic for the Z facility. The primary intended application is for diagnosing the stagnation behavior of Magnetized Liner Inertial Fusion (MagLIF) and similar targets. We have a variety of imaging systems at Z, both time-integrated and time-resolved, that provide valuable x-ray imaging information, but no system at Z up to this time provides a combined high-resolution imaging with multi-frame time resolution; this new diagnostic, called TRICXI for Time Resolved In-Chamber X-ray Imager, is meant to provide time-resolved spatial imaging with high resolution. The multi-frame camera consists of a microchannel plate camera. A key component to achieving the design goals is to place the instrument inside the Z vacuum chamber within 2 m of the load, which necessitates a considerable amount of x-ray shielding as well as a specially designed, independent vacuum system. A demonstration of the imaging capability for a series of MagLIF shots is presented. Predictions are given for resolution and relative image irradiance to guide experimenters in choosing the desired configuration for their experiments.
In this work, scratch and nanoindentation testing was used to determine hardness, fracture toughness, strain rate sensitivity, and activation volumes on additively manufactured graded and uniform Ni-Nb bulk specimens. Characterization showed the presence of a two phase system consisting of Ni3Nb and Ni6Nb7 intermetallics. Intermetallics were multimodal in nature, having grain and cell sizes spanning from a few nanometers to 10s of micrometers. The unique microstructure resulted in impressively high hardness, up to 20 GPa in the case of the compositionally graded sample. AM methods with surface deformation techniques are a useful way to rapidly probe material properties and alloy composition space.
This report documents a set of simplified models to predict pipeline collapse under nuclear pressure loading. After a review of pipeline design literature, a set of simple expressions have been selected to represent an approximation of the threshold pressure for failure from cross- sectional yielding, cross-section buckling, and longitudinal buckling. These expressions provide a first-order approximation on load levels needed to achieve collapse. As a demonstration, the collapse pressure for a set of representative pipelines are calculated. Estimated pressure fields are also computed for a set of nuclear detonations, providing estimates of the ground range limit for pipeline collapse.
ROL-PEBBL is a C++, MPI-based parallel code for mixed-integer PDE-constrained optimization (MIPDECO). In these problems we wish to optimize (control, design, etc.) physical systems, which must obey the laws of physics, when some of the decision variables must take integer values. ROL-PEBBL combines a code to efficiently search over integer choices (PEBBL = Parallel Enumeration Branch-and-Bound Library) and a code for efficient nonlinear optimization, including PDE-constrained optimization (ROL = Rapid Optimization Library). In this report, we summarize the design of ROL-PEBBL and initial applications/results. For an artificial source-inversion problem, finding sources of pollution on a grid from sparse samples, ROL-PEBBLs solution for the nest grid gave the best optimization guarantee for any general solver that gives both a solution and a quality guarantee.
Sierra/SD is an engineering structural dynamics code that provides Sandia and other customers a tool to model structural and acoustic physics on large complex physical systems using massively parallel processing. This report provides a detailed overview on Sierra/SD’s most recent physics package: coupled electro-mechanical physics. This capability uses the finite element method to model coupled electro-mechanical physics exhibited by piezoelectric materials. This report provides an applications overview, theory overview, and verification examples demonstrating the electro-mechanical physics modeling capabilities of Sierra/SD.
Innovation is a highly overused buzzword in government offices and corporate America. Just like leadership, innovation is something that organizations realize they need, but often are frustrated in their efforts to achieve. Making matters worse, the definition of innovation changes with the user and the context. Simply put, innovation is change and change for any organization is difficult. This study examines the topic of innovation and pays special attention to what works, what does not work, and the basic principles governing how one might go about innovating. As leadership is critical to any successful innovation effort, special attention is given to leading change and leading innovation. ''The reasonable man adapts himself to the world; the unreasonable one persists to adapt the world to himself. Therefore, all progress depends on the unreasonable man.'' - George Bernard Shaw
In this work, scratch and nanoindentation testing was used to determine hardness, fracture toughness, strain rate sensitivity, and activation volumes on additively manufactured graded and uniform Ni-Nb bulk specimens. Characterization showed the presence of a two phase system consisting of Ni3Nb and Ni6Nb7 intermetallics. Intermetallics were multimodal in nature, having grain and cell sizes spanning from a few nanometers to 10s of micrometers. The unique microstructure resulted in impressively high hardness, up to 20 GPa in the case of the compositionally graded sample. AM methods with surface deformation techniques are a useful way to rapidly probe material properties and alloy composition space.