The precise positioning of dopants in semiconductors using scanning tunneling microscopes has led to the development of planar dopant-based devices, also known as δ layer-based devices, facilitating the exploration of new concepts in classical and quantum computing. Recently, it has been shown that two distinct conductivity regimes (low- and high-bias regimes) exist in δ-layer tunnel junctions due to the presence of quasi-discrete and continuous states in the conduction band of δ-layer systems. Furthermore, discrete charged impurities in the tunnel junction region significantly influence the tunneling rates in δ-layer tunnel junctions. Here we demonstrate that electrical dipoles, i.e. zero-charge defects, present in the tunnel junction region can also significantly alter the tunneling rate, depending, however, on the specific conductivity regime, and orientation and moment of the dipole. In the low-bias regime, with high-resistance tunneling mode, dipoles of nearly all orientations and moments can alter the current, indicating the extreme sensitivity of the tunneling current to the slightest imperfection in the tunnel gap. In the high-bias regime, with low-resistivity, only dipoles with high moments and oriented in the directions perpendicular to the electron tunneling direction can significantly affect the current, thus making this conductivity regime significantly less prone to the influence of dipole defects with low-moments or oriented in the direction parallel to the tunneling.
This project uses a quantum simulation technique to reveal the true conducting properties of novel atomic precision advanced manufacturing materials. With Moore's law approaching the limit of scaling for the CMOS technology, it is crucial to provide the best computing power and resources to National Security missions. Atomic precision advanced manufacturing-based computing systems can become the key to the design, use, and security of modern weapon systems, critical infrastructure, and communications. We will utilize the state-of-the-art computational methodology to create a predictive simulator for p-type atomic precision advanced manufacturing systems, which may also find applications in counterfeit detection and anti-tamper.
We present an efficient self-consistent implementation of the Non-Equilibrium Green Function formalism, based on the Contact Block Reduction method for fast numerical efficiency, and the predictor-corrector approach, together with the Anderson mixing scheme, for the self-consistent solution of the Poisson and Schrödinger equations. Then, we apply this quantum transport framework to investigate 2D horizontal Si:P δ-layer Tunnel Junctions. We find that the potential barrier height varies with the tunnel gap width and the applied bias and that the sign of a single charge impurity in the tunnel gap plays an important role in the electrical current.
Thin, high-density layers of dopants in semiconductors, known as δ-layer systems, have recently attracted attention as a platform for exploration of the future quantum and classical computing when patterned in plane with atomic precision. However, there are many aspects of the conductive properties of these systems that are still unknown. Here we present an open-system quantum transport treatment to investigate the local density of electron states and the conductive properties of the δ-layer systems. A successful application of this treatment to phosphorous δ-layer in silicon both explains the origin of recently-observed shallow sub-bands and reproduces the sheet resistance values measured by different experimental groups. Further analysis reveals two main quantum-mechanical effects: 1) the existence of spatially distinct layers of free electrons with different average energies; 2) significant dependence of sheet resistance on the δ-layer thickness for a fixed sheet charge density.
While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.
One big challenge of the emerging atomic precision advanced manufacturing (APAM) technology for microelectronics application is to realize APAM devices that operate at room temperature (RT). We demonstrate that semiclassical technology computer aided design (TCAD) device simulation tool can be employed to understand current leakage and improve APAM device design for RT operation. To establish the applicability of semiclassical simulation, we first show that a semiclassical impurity scattering model with the Fermi-Dirac statistics can explain the very low mobility in APAM devices quite well; we also show semiclassical TCAD reproduces measured sheet resistances when proper mobility values are used. We then apply semiclassical TCAD to simulate current leakage in realistic APAM wires. With insights from modeling, we were able to improve device design, fabricate Hall bars, and demonstrate RT operation for the very first time.
We employ a fully charge self-consistent quantum transport formalism, together with a heuristic elastic scattering model, to study the local density of state (LDOS) and the conductive properties of Si:P δ-layer wires at the cryogenic temperature of 4 K. The simulations allow us to explain the origin of shallow conducting sub-bands, recently observed in high resolution angle-resolved photoemission spectroscopy experiments. Our LDOS analysis shows the free electrons are spatially separated in layers with different average kinetic energies, which, along with elastic scattering, must be accounted for to reproduce the sheet resistance values obtained over a wide range of the δ-layer donor densities.