Publications

7 Results

Search results

Jump to search filters

Concentric Spherical GNN for 3D Representation Learning

Fox, James S.; Zhao, Bo; Rajamanickam, Sivasankaran R.; Ramprasad, Rampi; Le SongLe

Learning 3D representations that generalize well to arbitrarily oriented inputs is a challenge of practical importance in applications varying from computer vision to physics and chemistry. We propose a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps, of which the single sphere representation is a special case. Our hierarchical architecture is based on alternatively learning to incorporate both intra-sphere and inter-sphere information. We show the applicability of our method for two different types of 3D inputs, mesh objects, which can be regularly sampled, and point clouds, which are irregularly distributed. We also propose an efficient mapping of point clouds to concentric spherical images, thereby bridging spherical convolutions on grids with general point clouds. We demonstrate the effectiveness of our approach in improving state-of-the-art performance on 3D classification tasks with rotated data.

More Details

How Robust Are Graph Neural Networks to Structural Noise?

Fox, James S.; Rajamanickam, Sivasankaran R.

Graph neural networks (GNNs) are an emerging model for learning graph embeddings and making predictions on graph structured data. However, robustness of graph neural networks is not yet well-understood. In this work, we focus on node structural identity predictions, where a representative GNN model is able to achieve near-perfect accuracy. We also show that the same GNN model is not robust to addition of structural noise, through a controlled dataset and set of experiments. Finally, we show that under the right conditions, graph-augmented training is capable of significantly improving robustness to structural noise.

More Details
7 Results
7 Results