In this study we present a replication method to determine surface roughness and to identify surface features when a sample cannot be directly analyzed by conventional techniques. As a demonstration, this method was applied to an unused spent nuclear fuel dry storage canister to determine variation across different surface features. In this study, an initial material down-selection was performed to determine the best molding agent and determined that non-modified Polytek PlatSil23-75 provided the most accurate representation of the surface while providing good usability. Other materials that were considered include Polygel Brush-On 35 polyurethane rubber (with and without Pol-ease 2300 release agent), Polytek PlatSil73-25 silicone rubber (with and without PlatThix thickening agent and Pol-ease 2300 release agent), and Express STD vinylpolysiloxane impression putty. The ability of PlatSil73-25 to create an accurate surface replica was evaluated by creating surface molds of several locations on surface roughness standards representing ISO grade surfaces N3, N5, N7, and N8. Overall, the molds were able to accurately reproduce the expected roughness average (Ra) values, but systematically over-estimated the peak-valley maximum roughness (Rz) values. Using a 3D printed sample cell, several locations across the stainless steel spent nuclear fuel canister were sampled to determine the surface roughness. These measurements provided information regarding variability in normal surface roughness across the canister as well as a detailed evaluation on specific surface features (e.g., welds, grind marks, etc.). The results of these measurements can support development of dry storage canister ageing management programs, as surface roughness is an important factor for surface dust deposition and accumulation. This method can be applied more broadly to different surfaces beyond stainless steel to provide rapid, accurate surface replications for analytical evaluation by profilometry.
The purpose of this report is to document updates on testing of the apparatus built to simulate commercial drying procedures for spent nuclear fuel at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention that incorporate relevant physics and well-controlled boundary conditions. This report documents testing updates for the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. This report describes preliminary testing of the ADCS through measurement and analysis of the thermal response of the system to a subset of commercial drying conditions that exclude the introduction of water, namely simulated decay heats and pressures relevant to commercial drying. This test series, referred to as a “dry” test series in this report, spans three uniform waterproof heater rod powers (representing spent fuel decay heats), four helium fill pressures, and six vacuum levels. This test series was conducted to cover the range of expected ADCS testing conditions for upcoming “wet” testing, where water will be introduced and a simulated commercial drying cycle will be performed. The dry test conditions were derived from the commercial drying conditions seen in the High Burnup Demonstration and the vacuum drying conditions chosen for a smaller scale Dashpot Drying Apparatus tested at Sandia National Laboratories in FY22. For a given uniform power and pressure/vacuum level, the ADCS was operated at constant power and pressure and allowed to reach steady state conditions. The thermal data obtained from these tests were analyzed, and the results can inform computational models built to simulate commercial drying processes by providing baseline thermal data prior to the introduction of water. Following the preliminary dry tests, a test plan for the ADCS will be developed to implement a drying procedure that begins with the introduction of water to the system and is based on measurements from the drying process used for the High Burnup Demonstration Project. While applying power to the simulated fuel rods, this procedure is expected to consist of filling the ADCS vessel with water, draining the water with applied pressure and multiple helium blowdowns, evacuating additional water with a vacuum drying sequence at successively lower pressures, and backfilling the vessel with helium. Additional investigations are expected to feature failed fuel rod simulators with engineered cladding defects and guide tubes with obstructed dashpots to challenge the drying system with multiple water retention sites. The data from these investigations is expected to inform the efficacy of commercial drying operations through the quantification of residual water in a prototypic-length dry storage canister.
The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents a new test apparatus, the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. This report describes the ADCS vessel build that was completed late in FY22, including the receipt of the prototypic length waterproof heater rods and construction of the fuel basket and the pressure vessel components. In addition, installations of thermocouples, emissivity coupons, pressure and vacuum lines, pressure transducers, and electrical connections were completed. Preliminary power functionality testing was conducted to demonstrate the capabilities of the ADCS. In FY23, a test plan for the ADCS will be developed to implement a drying procedure based on measurements from the process used for the High Burnup Demonstration Project. While applying power to the simulated fuel rods, this procedure is expected to consist of filling the ADCS vessel with water, draining the water with applied pressure and multiple helium blowdowns, evacuating additional water with a vacuum drying sequence at successively lower pressures, and backfilling the vessel with helium. Additional investigations are expected to feature failed fuel rod simulators with engineered cladding defects and guide tubes with obstructed dashpots to challenge the drying system with multiple water retention sites.
A previous investigation produced data sets that can be used to benchmark the codes and best practices presently used to determine cladding temperatures and induced cooling air flows in modern horizontal dry storage systems. The horizontal dry cask simulator (HDCS) was designed to generate this benchmark data and add to the existing knowledge base. The objective of the previous HDCS investigation was to capture the dominant physics of a commercial dry storage system in a well-characterized test apparatus for a wide range of operational parameters. The close coupling between the thermal response of the canister system and the resulting induced cooling air flow rate was of particular importance. The previous investigation explored these parameters using helium backfill at 100 kPa and 800 kPa pressure as well as air backfill with a series of simulated decay heats. The helium tests simulated a horizontal dry cask storage system at normal storage conditions with either atmospheric or elevated backfill pressure, while the air tests simulated horizontal storage canisters following a complete loss of helium backfill, in which case the helium would be replaced by air. The present HDCS investigation adds to the previous investigation by exploring steady-state conditions at various stages of the loss of helium backfill from a horizontal dry cask storage system. This is achieved by using helium/air blends as a backfill in the HDCS and running a series of tests using various simulated decay heats to explore the effects of relative helium/air molar concentration on the thermal response of a simulated horizontal dry cask storage system. A total of twenty tests were conducted where the HDCS achieved steady state for various assembly powers, representative of decay heat. The power levels tested were 0.50, 1.00, 2.50, and 5.00 kW. All tests were run at 100 kPa vessel pressure. The backfill gases used in these tests are given in this report as a function of mole fraction of helium (He), balanced by air: 1.0, 0.9, 0.5, 0.1, and 0.0 He. Steady-state conditions (where the steady-state start condition is defined as where the change in temperature with respect to time for the majority of HDCS components is less than or equal to 0.3 K/h) were achieved for all test cases.