This report documents the updated seismic shake table test plan. The report describes the shake table inputs (ground motions), test hardware, shake table facility, friction experiment, and proposed instrumentation.
This report is a preliminary test plan of the seismic shake table test. The final report will be developed when all decisions regarding the test hardware, instrumentation, and shake table inputs are made. A new revision of this report will be issued in spring of 2022. The preliminary test plan documents the free-field ground motions that will be used as inputs to the shake table, the test hardware, and instrumentation. It also describes the facility at which the test will take place in late summer of 2022.
Currently, spent nuclear fuel (SNF) is stored in on-site independent spent-fuel storage installations (ISFSIs) at seventythree (73) nuclear power plants (NPPs) in the US. Because a site for geologic repository for permanent disposal of SNF has not been constructed, the SNF will remain in dry storage significantly longer than planned. During this time, the ISFSIs, and potentially consolidated storage facilities, will experience earthquakes of different magnitudes. The dry storage systems are designed and licensed to withstand large seismic loads. When dry storage systems experience seismic loads, there are little data on the response of SNF assemblies contained within them. The Spent Fuel Waste Disposition (SFWD) program is planning to conduct a full-scale seismic shake table test to close the gap related to the seismic loads on the fuel assemblies in dry storage systems. This test will allow for quantifying the strains and accelerations on surrogate fuel assembly hardware and cladding during earthquakes of different magnitudes and frequency content. The main component of the test unit will be the full-scale NUHOMS 32 PTH2 dry storage canister. The canister will be loaded with three surrogate fuel assemblies and twenty-nine dummy assemblies. Two dry storage configurations will be tested – horizontal and vertical above-ground concrete overpacks. These configurations cover 91% of the current dry storage configurations. The major input into the shake table test are the seismic excitations or the earthquake ground motions – acceleration time histories in two horizontal and one vertical direction that will be applied to the shake table surface during the tests. The shake table surface represents the top of the concrete pad on which a dry storage system is placed. The goal of the ground motion task is to develop the ground motions that would be representative of the range of seismotectonic and other conditions that any site in the Western US (WUS) or Central Eastern US (CEUS) might entail. This task is challenging because of the large number of the ISFSI sites, variety of seismotectonic and site conditions, and effects that soil amplification, soil-structure interaction, and pad flexibility may have on the ground motions.
The 30 cm drop is the remaining NRC normal conditions of transport (NCT) regulatory requirement (10 CFR 71.71) for which there are no data on the response of spent fuel. While obtaining data on the spent fuel is not a direct requirement, it allows for quantifying the risk of fuel breakage resulting from a cask drop from a height of 30 cm or less. Because a full-scale cask and impact limiters are very expensive, 3 consecutive drop tests were conducted to obtain strains on a full-scale surrogate 17x17 PWR assembly. The first step was a 30 cm drop of a 1/3 scale cask loaded with dummy assemblies. The second step was a 30 cm drop test of a full-scale dummy assembly. The third step was a 30 cm drop of a full-scale surrogate assembly. The results of this final test are presented in this paper. The test was conducted in May 2020. The acceleration pulses on the surrogate assembly were in good agreement with the expected pulses derived from steps 1 and 2. This confirmed that during the 30 cm drop the surrogate assembly experienced the same conditions as it would have if it had been dropped in a full-scale cask with impact limiters. The surrogate assembly was instrumented with 27 strain gauges. Pressure paper was inserted between the rods within the two long and two short spacer grid spans in order to register the pressure in case of rod-to-rod contact. The maximum observed peak strain on the surrogate assembly was 1,724 microstrain at the bottom end of the assembly. The pressure paper sheets from the two short spans were blank. The pressure paper sheets from the two long spans, except a few middle ones, showed marks indicating rod-to-rod contact. The maximum estimated contact pressure was 4,100 psi. The longitudinal bending stress corresponding to the maximum observed strain value (calculated from the stress-strain curve for low burnup cladding) was 22,230 psi. Both values are significantly below the yield strength of the cladding. The major conclusion is that the fuel rods will maintain their integrity following a 30 cm drop inside of a transportation cask.
The 30 cm drop is the remaining NRC normal conditions of transport (NCT) regulatory requirement (10 CFR 71.71) for which there are no data on the actual surrogate fuel. While obtaining data on the actual fuel is not a direct requirement, it provides definitive information which aids in quantifying the risk of fuel breakage resulting from a cask drop from a height of 30 cm or less. The 30 cm drop test with the full-scale surrogate assembly conducted in May 2020 was the last step needed for quantifying the strains on the surrogate assembly rods under NCT. The full-scale surrogate assembly used in the 2020 30 cm drop test was built using a new 17x17 Pressurized Water Reactor (PWR) Westinghouse skeleton filled with the copper rods and 3 zircaloy rods from the full-scale surrogate assembly used in the Multi-Modal Transportation Test (MMTT). Felt pads were attached to the surrogate assembly bottom prior to the 30 cm drop to adequately represent the effects of the impact limiters and the cask. Note that felt "programming material" has been used extensively in past drop tests and is known to be a good material for programming a desired shock pulse. The felt pad configuration was determined during a previous series of tests reported in. The acceleration pulses observed on the surrogate assembly during the test were in good agreement with the expected pulses. This confirmed that during the 30 cm drop the surrogate assembly experienced the same conditions as it would if it was dropped in the cask with the impact limiters.
The goal of this transportation analysis (TA) is to update the 2008 TA in order to evaluate the impacts associated with the transportation of transuranic (TRU) waste from waste generator sites to the Waste Isolation Pilot Plant (WIPP) facility and from waste generator sites to the Idaho National Laboratory (INL).
The data from the multi-modal transportation test conducted in 2017 demonstrated that the inputs from the shock events during all transport modes (truck, rail, and ship) were amplified from the cask to the spent commercial nuclear fuel surrogate assemblies. These data do not support common assumption that the cask content experiences the same accelerations as the cask itself. This was one of the motivations for conducting 30 cm drop tests. The goal of the 30 cm drop test is to measure accelerations and strains on the surrogate spent nuclear fuel assembly and to determine whether the fuel rods can maintain their integrity inside a transportation cask when dropped from a height of 30 cm. The 30 cm drop is the remaining NRC normal conditions of transportation regulatory requirement (10 CFR 71.71) for which there are no data on the actual surrogate fuel. Because the full-scale cask and impact limiters were not available (and their cost was prohibitive), it was proposed to achieve this goal by conducting three separate tests. This report describes the first two tests — the 30 cm drop test of the 1/3 scale cask (conducted in December 2018) and the 30 cm drop of the full-scale dummy assembly (conducted in June 2019). The dummy assembly represents the mass of a real spent nuclear fuel assembly. The third test (to be conducted in the spring of 2020) will be the 30 cm drop of the full-scale surrogate assembly. The surrogate assembly represents a real full-scale assembly in physical, material, and mechanical characteristics, as well as in mass.
This report describes the results from a series of tests of surrogate pressurized water reactor (PWR) nuclear fuel assemblies in a rail cask during various modes of transportation and cask handling conducted between June and October 2017. The primary purpose of the tests was to measure strain and acceleration on surrogate fuel rods when the assemblies are subjected to normal conditions of transport (NCT) within the Equipos Nucleares, S.A. (ENSA) UNiversal (ENUN) 32P cask. Acceleration on the cask basket, the cask, the cask cradle, and the transport platforms were also measured. A summary of the test details, logistics and operations for performing the tests is included.