Publications

Publications / Journal Article

Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores

Senanayake, Hasini S.; Greathouse, Jeffery A.; Ilgen, Anastasia G.; Thompson, Ward H.

Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approachis a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined inhydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on thesilica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. Thisappears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated withtheweaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.