Publications

Results 1501–1600 of 99,299

Search results

Jump to search filters

Developing an intrinsically secure information barrier for arms control verification through machine learning

Padilla, Eduardo A.; Siefert, Christopher; Komkov, Heidi B.; Tsai, Sarah W.; Weinfurther, Kyle J.; Kamm, Ryan J.; Davis, James H.; Hecht, Adam J.

Near-term solutions are needed to allow for flexible engagement in future nuclear arms control discussions. This project developed a method for implementing an information barrier (IB) on commercial systems, shortening the research and development lifecycle for warhead verification technologies while offering improved and inherently flexible capabilities. The crux of the verification challenge remains the difficulty in developing an authenticatable IB which prevents sensitive host country information from inadvertent transmission to an inspector. Many concepts for IB’s rely on dedicated “trusted” processor modules developed with dedicated custom radiation detection systems and associated algorithms. Without a priori knowledge of the treaty item, the parameter space for measurements can be nearly infinite and robustness against spoofing without the ability to view sensitive data is key. This project has produced an unclassified framework capable of ingesting data from common gamma detectors and identifying the presence of weapons grade nuclear material at over 90% accuracy.

More Details

MASK4 Test Report

Forbush, Dominic; Coe, Ryan G.; Donnelly, Timothy J.; Bacelli, Giorgio; Gallegos-Patterson, Damian; Spinneken, Johannes; Lee, Jantzen; Crandell, Robert; Dullea, Kevin

Wave energy converters (WECs) are designed to produce useful work from ocean waves. This useful work can take the form of electrical power or even pressurized water for, e.g., desalination. This report details the findings from a wave tank test focused on that production of useful work. To that end, the experimental system and test were specifically designed to validate models for power transmission throughout the WEC system. Additionally, the validity of co-design informed changes to the power take-off (PTO) were assessed and shown to provide the expected improvements in system performance.

More Details

IDB Database Tables

Schwartz, Steven R.

The International Database of Reference Gamma-Ray Spectra of Various Nuclear Matter is designed to hold curated gamma spectral data is hosted by the International Atomic Energy Agency on its public facing web site. The database used to hold the spectral data was designed by Sandia National Labs under the auspices of the State Department’s Support Program. This document describes the tables and entity relationships that make up the database.

More Details

Predicting EBW detonator failure using DSC data

Journal of Thermal Analysis and Calorimetry

Hobbs, Michael L.

Exploding bridgewire detonators (EBWs) containing pentaerythritol tetranitrate (PETN) exposed to high temperatures may not function following discharge of the design electrical firing signal from a charged capacitor. Knowing functionality of these arbitrarily facing EBWs is crucial when making safety assessments of detonators in accidental fires. Orientation effects are only significant when the PETN is partially melted. Here, the melting temperature can be measured with a differential scanning calorimeter. Nonmelting EBWs will be fully functional provided the detonator never exceeds 406 K (133 °C) for at least 1 h. Conversely, EBWs will not be functional once the average input pellet temperature exceeds 414 K (141 °C) for a least 1 min which is long enough to cause the PETN input pellet to completely melt. Functionality of the EBWs at temperatures between 406 and 414 K will depend on orientation and can be predicted using a stratification model for downward facing detonators but is more complex for arbitrary orientations. A conservative rule of thumb would be to assume that the EBWs are fully functional unless the PETN input pellet has completely melted.

More Details

Accurate equation of state of H2He binary mixtures up to 5.4 GPa

Physical Review. B

Clay III, Raymond C.; Duwal, Sakun; Seagle, Christopher T.; Zoller, Charlie M.; Hemley, Russell J.; Ryu, Young J.; Tkachev, Sergey; Prakapenka, Vitali; Ahart, Muhtar

Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. Furthermore, a detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented.

More Details

CO2 adsorption mechanisms at the ZIF-8 interface in a Type 3 porous liquid

Journal of Molecular Liquids

Rimsza, Jessica; Hurlock, Matthew; Nenoff, Tina M.; Christian, Matthew S.

Porous liquids (PLs) are an attractive material for gas separation and carbon sequestration due to their permanent internal porosity and high adsorption capacity. PLs that contain zeolitic imidazole frameworks (ZIFs), such as ZIF-8, form PLs through exclusion of aqueous solvents from the framework pore due to its hydrophobicity. The gas adsorption sites in ZIF-8 based PLs are historically unknown; gas molecules could be captured in the ZIF-8 pore or adsorb at the ZIF-8 interface. To address this question, ab initio molecular dynamics was used to predict CO2 binding sites in a PL composed of a ZIF-8 particle solvated in a water, ethylene glycol, and 2-methylimidazole solvent system. Further, the results show that CO2 energetically prefers to reside inside the ZIF-8 pore aperture due to strong van der Waals interactions with the terminal imidazoles. However, the CO2 binding site can be blocked by larger solvent molecules that have greater adsorption interactions. CO2 molecules were unable to diffuse into the ZIF-8 pore, with CO2 adsorption occurring due to binding with the ZIF-8 surface. Therefore, future design of ZIF-based PLs for enhanced CO2 adsorption should be based on the strength of gas binding at the solvated particle surface.

More Details

Large Destabilization of (TiVNb)-Based Hydrides via (Al, Mo) Addition: Insights from Experiments and Data-Driven Models

ACS Applied Energy Materials

Pineda Romero, Nayely; Witman, Matthew D.; Harvey, Kim; Stavila, Vitalie; Nassif, Vivian; Elkaim, Erik; Zlotea, Claudia

High-entropy alloys (HEAs) represent an interesting alloying strategy that can yield exceptional performance properties needed across a variety of technology applications, including hydrogen storage. Examples include ultrahigh volumetric capacity materials (BCC alloys → FCC dihydrides) with improved thermodynamics relative to conventional high-capacity metal hydrides (like MgH2), but still further destabilization is needed to reduce operating temperature and increase system-level capacity. In this work, we demonstrate efficient hydride destabilization strategies by synthesizing two new Al0.05(TiVNb)0.95-xMox (x = 0.05, 0.10) compositions. We specifically evaluate the effect of molybdenum (Mo) addition on the phase structure, microstructure, hydrogen absorption, and desorption properties. Both alloys crystallize in a bcc structure with decreasing lattice parameters as the Mo content increases. The alloys can rapidly absorb hydrogen at 25 °C with capacities of 1.78 H/M (2.79 wt %) and 1.79 H/M (2.75 wt %) with increasing Mo content. Pressure-composition isotherms suggest a two-step reaction for hydrogen absorption to a final fcc dihydride phase. The experiments demonstrate that increasing Mo content results in a significant hydride destabilization, which is consistent with predictions from a gradient boosting tree data-driven model for metal hydride thermodynamics. Furthermore, improved desorption properties with increasing Mo content and reversibility were observed by in situ synchrotron X-ray diffraction, in situ neutron diffraction, and thermal desorption spectroscopy.

More Details

Applying Sensor-Based Phase Identification With AMI Voltage in Distribution Systems

IEEE Access

Blakely, Logan; Reno, Matthew J.; Azzolini, Joseph A.; Jones, Christian B.; Nordy, David

Accurate distribution system models are becoming increasingly critical for grid modernization tasks, and inaccurate phase labels are one type of modeling error that can have broad impacts on analyses using the distribution system models. This work demonstrates a phase identification methodology that leverages advanced metering infrastructure (AMI) data and additional data streams from sensors (relays in this case) placed throughout the medium-voltage sector of distribution system feeders. Intuitive confidence metrics are employed to increase the credibility of the algorithm predictions and reduce the incidence of false-positive predictions. The method is first demonstrated on a synthetic dataset under known conditions for robustness testing with measurement noise, meter bias, and missing data. Then, four utility feeders are tested, and the algorithm’s predictions are proven to be accurate through field validation by the utility. Lastly, the ability of the method to increase the accuracy of simulated voltages using the corrected model compared to actual measured voltages is demonstrated through quasi-static time-series (QSTS) simulations. The proposed methodology is a good candidate for widespread implementation because it is accurate on both the synthetic and utility test cases and is robust to measurement noise and other issues.

More Details

Performance assessment for climate intervention (PACI): preliminary application to a stratospheric aerosol injection scenario

Frontiers in Environmental Science

Wheeler, Lauren B.; Zeitler, Todd Z.; Brunell, Sarah B.; Lien, Jessica; Shand, Lyndsay; Wagman, Benjamin M.; Roesler, Erika L.; Martinez, Carianne; Potter, Kevin M.

As the prospect of exceeding global temperature targets set forth in the Paris Agreement becomes more likely, methods of climate intervention are increasingly being explored. With this increased interest there is a need for an assessment process to understand the range of impacts across different scenarios against a set of performance goals in order to support policy decisions. The methodology and tools developed for Performance Assessment (PA) for nuclear waste repositories shares many similarities with the needs and requirements for a framework for climate intervention. Using PA, we outline and test an evaluation framework for climate intervention, called Performance Assessment for Climate Intervention (PACI) with a focus on Stratospheric Aerosol Injection (SAI). We define a set of key technical components for the example PACI framework which include identifying performance goals, the extent of the system, and identifying which features, events, and processes are relevant and impactful to calculating model output for the system given the performance goals. Having identified a set of performance goals, the performance of the system, including uncertainty, can then be evaluated against these goals. Using the Geoengineering Large Ensemble (GLENS) scenario, we develop a set of performance goals for monthly temperature, precipitation, drought index, soil water, solar flux, and surface runoff. The assessment assumes that targets may be framed in the context of risk-risk via a risk ratio, or the ratio of the risk of exceeding the performance goal for the SAI scenario against the risk of exceeding the performance goal for the emissions scenario. From regional responses, across multiple climate variables, it is then possible to assess which pathway carries lower risk relative to the goals. The assessment is not comprehensive but rather a demonstration of the evaluation of an SAI scenario. Future work is needed to develop a more complete assessment that would provide additional simulations to cover parametric and aleatory uncertainty and enable a deeper understanding of impacts, informed scenario selection, and allow further refinements to the approach.

More Details

Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum. II. Bayesian model calibration

Journal of Applied Physics

Brown, Justin L.; Davis, Jean-Paul; Tucker, J.D.; Huerta, Jose G.; Shuler, Kurtis

Dynamic shockless compression experiments provide the ability to explore material behavior at extreme pressures but relatively low temperatures. Typically, the data from these types of experiments are interpreted through an analytic method called Lagrangian analysis. In this work, alternative analysis methods are explored using modern statistical methods. Specifically, Bayesian model calibration is applied to a new set of platinum data shocklessly compressed to 570 GPa. Several platinum equation-of-state models are evaluated, including traditional parametric forms as well as a novel non-parametric model concept. The results are compared to those in Paper I obtained by inverse Lagrangian analysis. The comparisons suggest that Bayesian calibration is not only a viable framework for precise quantification of the compression path, but also reveals insights pertaining to trade-offs surrounding model form selection, sensitivities of the relevant experimental uncertainties, and assumptions and limitations within Lagrangian analysis. The non-parametric model method, in particular, is found to give precise unbiased results and is expected to be useful over a wide range of applications. The calibration results in estimates of the platinum principal isentrope over the full range of experimental pressures to a standard error of 1.6%, which extends the results from Paper I while maintaining the high precision required for the platinum pressure standard.

More Details

pvlib python: 2023 project update

Journal of Open Source Software

Anderson, Kevin S.; Hansen, Clifford; Holmgren, William F.; Mikofski, Mark A.; Jensen, Adam R.; Driesse, Anton

pvlib python is a community-developed, open-source software toolbox for simulating the performance of solar photovoltaic (PV) energy components and systems. It provides reference implementations of over 100 empirical and physics-based models from the peer-reviewed scientific literature, including solar position algorithms, irradiance models, thermal models, and PV electrical models. In addition to individual low-level model implementations, pvlib python provides high-level workflows that chain these models together like building blocks to form complete “weather-to-power” photovoltaic system models. It also provides functions to fetch and import a wide variety of weather datasets useful for PV modeling. pvlib python has been developed since 2013 and follows modern best practices for open-source python software, with comprehensive automated testing, standards-based packaging, and semantic versioning. Its source code is developed openly on GitHub and releases are distributed via the Python Package Index (PyPI) and the conda-forge repository. pvlib python’s source code is made freely available under the permissive BSD-3 license. Here we (the project’s core developers) present an update on pvlib python, describing capability and community development since our 2018 publication (Holmgren, Hansen, & Mikofski, 2018).

More Details

Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum. I. Inverse Lagrangian analysis

Journal of Applied Physics

Davis, Jean-Paul; Brown, Justin L.

Absolute measurements of solid-material compressibility by magnetically driven shockless dynamic compression experiments to multi-megabar pressures have the potential to greatly improve the accuracy and precision of pressure calibration standards for use in diamond anvil cell experiments. To this end, we apply characteristics-based inverse Lagrangian analysis (ILA) to 11 sets of ramp-compression data on pure platinum (Pt) metal and then reduce the resulting weighted-mean stress-strain curve to the principal isentrope and room-temperature isotherm using simple models for yield stress and Grüneisen parameter. We introduce several improvements to methods for ILA and quasi-isentrope reduction, the latter including calculation of corrections in wave speed instead of stress and pressure to render results largely independent of initial yield stress while enforcing thermodynamic consistency near zero pressure. More importantly, we quantify in detail the propagation of experimental uncertainty through ILA and model uncertainty through quasi-isentrope reduction, considering all potential sources of error except the electrode and window material models used in ILA. Compared to previous approaches, we find larger uncertainty in longitudinal stress. Monte Carlo analysis demonstrates that uncertainty in the yield-stress model constitutes by far the largest contribution to uncertainty in quasi-isentrope reduction corrections. We present a new room-temperature isotherm for Pt up to 444 GPa, with 1-sigma uncertainty at that pressure of just under ± 1.2 % ; the latter is about a factor of three smaller than uncertainty previously reported for multi-megabar ramp-compression experiments on Pt. The result is well represented by a Vinet-form compression curve with (isothermal) bulk modulus K 0 = 270.3 ± 3.8 GPa, pressure derivative K 0 ′ = 5.66 ± 0.10 , and correlation coefficient R K 0 , K 0 ′ = − 0.843 .

More Details

Passive and active neutron signatures of 233U for nondestructive assay

Physical Review Applied

Searfus, O.; Marleau, P.; Uribe, Eva U.; Reedy, Heather A.; Jovanovic, Igor

The thorium fuel cycle is emerging as an attractive alternative to conventional nuclear fuel cycles, as it does not require the enrichment of uranium for long-term sustainability. The operating principle of this fuel cycle is the irradiation of 232Th to produce 233U, which is fissile and sustains the fission chain reaction. 233U poses unique challenges for nuclear safeguards, as it is associated with a uniquely extreme γ-ray environment from 232U contamination, which limits the feasibility of the γ-ray-based assay, as well as more conservative accountability requirements than for 235U set by the International Atomic Energy Agency. Consequently, instrumentation used for safeguarding 235U in traditional fuel cycles may be inapplicable. It is essential that the nondestructive signatures of 233U be characterized so that nuclear safeguards can be applied to thorium fuel-cycle facilities as they come online. In this work, a set of 233U3O8 plates, containing 984 g233U, was measured at the National Criticality Experiments Research Center. A high-pressure 4He gaseous scintillation detector, which is insensitive to γ-rays, was used to perform a passive fast neutron spectral signature measurement of 233U3O8, and was used in conjunction with a pulsed deuterium-tritium neutron generator to demonstrate the differential die-away signature of this material. Furthermore, an array of 3He detectors was used in conjunction with the same neutron generator to measure the delayed neutron time profile of 233U, which is unique to this nuclide. These measurements provide a benchmark for future nondestructive assay instrumentation development, and demonstrate a set of key neutron signatures to be leveraged for nuclear safeguards in the thorium fuel cycle.

More Details

The Roadrunner Trap: A QSCOUT Device

Revelle, Melissa C.; Delaney, Matthew A.; Haltli, Raymond A.; Heller, Edwin J.; Nordquist, Christopher D.; Ou, Eric; Van Der Wall, Jay W.; Clark, Susan M.

The Roadrunner ion trap is a micro-fabricated surface-electrode ion trap based on silicon technology. This trap has one long linear section and a junction to allow for chain storage and reconfiguration. It uses a symmetric rf-rail design with segmented inner and outer control electrodes and independent control in the junction arms. The trap is fabricated on Sandia’s High Optical Access (HOA) platform to provide good optical access for tightly focused laser beams skimming the trap surface. It is packaged on our custom Bowtie-102 ceramic pin or land grid array packages using a 2.54 mm pitch for backside pins or pads. This trap also includes an rf sensing capacitive divider and tungsten wires for heating or temperature monitoring. The Roadrunner builds on the knowledge gained from previous surface traps fabricated at Sandia while improving ion control capabilities.

More Details

Real time lithium metal calendar aging in common battery electrolytes

Frontiers in Batteries and Electrochemistry

Merrill, Laura C.; Long, Daniel M.; Rosenberg, Samantha G.; Foulk, James W.; Lam, Nhu; Harrison, Katharine L.

Li metal anodes are highly sought after for high energy density applications in both primary commercial batteries and next-generation rechargeable batteries. In this research, Li metal electrodes are aged in coin cells for a year with electrolytes relevant to both types of batteries. The aging response is monitored via electrochemical impedance spectroscopy, and Li electrodes are characterized post-mortem. It was found that the carbonate-based electrolytes exhibit the most severe aging effects, despite the use of LiBF4-based carbonate electrolytes in Li/CFx Li primary batteries. Highly concentrated LiFSI electrolytes exhibit the most minimal aging effects, with only a small impedance increase with time. This is likely due to the concentrated nature of the electrolyte causing fewer solvent molecules available to react with the electrode surface. LiI-based electrolytes also show improved aging behavior both on their own and as an additive, with a similar impedance response with time as the concentrated LiFSI electrolytes. Since I is in its most reduced state, it likely prevents further reaction and may help protect the Li electrode surface with a primarily organic solid electrolyte interphase.

More Details

Uncovering anisotropic effects of electric high-moment dipoles on the tunneling current in $\delta$-layer tunnel junctions

Scientific Reports

Mendez Granado, Juan P.; Mamaluy, Denis

The precise positioning of dopants in semiconductors using scanning tunneling microscopes has led to the development of planar dopant-based devices, also known as δ layer-based devices, facilitating the exploration of new concepts in classical and quantum computing. Recently, it has been shown that two distinct conductivity regimes (low- and high-bias regimes) exist in δ-layer tunnel junctions due to the presence of quasi-discrete and continuous states in the conduction band of δ-layer systems. Furthermore, discrete charged impurities in the tunnel junction region significantly influence the tunneling rates in δ-layer tunnel junctions. Here we demonstrate that electrical dipoles, i.e. zero-charge defects, present in the tunnel junction region can also significantly alter the tunneling rate, depending, however, on the specific conductivity regime, and orientation and moment of the dipole. In the low-bias regime, with high-resistance tunneling mode, dipoles of nearly all orientations and moments can alter the current, indicating the extreme sensitivity of the tunneling current to the slightest imperfection in the tunnel gap. In the high-bias regime, with low-resistivity, only dipoles with high moments and oriented in the directions perpendicular to the electron tunneling direction can significantly affect the current, thus making this conductivity regime significantly less prone to the influence of dipole defects with low-moments or oriented in the direction parallel to the tunneling.

More Details

Pressure-based process monitoring of direct-ink write material extrusion additive manufacturing

Additive Manufacturing

Kopatz, Jessica W.; Reinholtz, William D.; Cook, Adam; Tappan, Alexander S.; Grillet, Anne M.

As additive manufacturing (AM) has become a reliable method for creating complex and unique hardware rapidly, the quality assurance of printed parts remains a priority. In situ process monitoring offers an approach for performing quality control while simultaneously minimizing post-production inspection. For extrusion printing processes, direct linkages between extrusion pressure fluctuations and print defects can be established by integrating pressure sensors onto the print head. In this work, the sensitivity of process monitoring is tested using engineered spherical defects. Pressure and force sensors located near an ink reservoir and just before the nozzle are shown to assist in identification of air bubbles, changes in height between the print head and build surface, clogs, and particle aggregates with a detection threshold of 60–70% of the nozzle diameter. Visual evidence of printed bead distortion is quantified using optical image analysis and correlated to pressure measurements. Importantly, this methodology provides an ability to monitor the quality of AM parts produced by extrusion printing methods and can be accomplished using commonly available pressure-sensing equipment.

More Details

Manganese-based A-site high-entropy perovskite oxide for solar thermochemical hydrogen production

Journal of Materials Chemistry A

Bishop, Sean R.; Liu, Cijie; Liu, Xingbo; King, Keith A.; Sugar, Joshua D.; Mcdaniel, Anthony H.; Salinas, Perla A.; Coker, Eric N.; Foulk, James W.; Luo, Jian

Non-stoichiometric perovskite oxides have been studied as a new family of redox oxides for solar thermochemical hydrogen (STCH) production owing to their favourable thermodynamic properties. However, conventional perovskite oxides suffer from limited phase stability and kinetic properties, and poor cyclability. Here, we report a strategy of introducing A-site multi-principal-component mixing to develop a high-entropy perovskite oxide, (La1/6Pr1/6Nd1/6Gd1/6Sr1/6Ba1/6)MnO3 (LPNGSB_Mn), which shows desirable thermodynamic and kinetics properties as well as excellent phase stability and cycling durability. LPNGSB_Mn exhibits enhanced hydrogen production (?77.5 mmol moloxide?1) compared to (La2/3Sr1/3)MnO3 (?53.5 mmol moloxide?1) in a short 1 hour redox duration and high STCH and phase stability for 50 cycles. LPNGSB_Mn possesses a moderate enthalpy of reduction (252.51-296.32 kJ (mol O)?1), a high entropy of reduction (126.95-168.85 J (mol O)?1 K?1), and fast surface oxygen exchange kinetics. All A-site cations do not show observable valence changes during the reduction and oxidation processes. This research preliminarily explores the use of one A-site high-entropy perovskite oxide for STCH.

More Details

Predictive maturity of non-linear concrete constitutive models for impact simulation

Nuclear Engineering and Design

Hogancamp, Joshua; Jones, Christopher

This paper explores the concept of predictive maturity for non-linear concrete constitutive models employed in the computational prediction of the structural response of reinforced concrete structures to impact from free-flying missiles. Such concrete constitutive models are widely varied in complexity. Three constitutive models were utilized within the same finite element structural model to simulate the response of the IRIS III experiment. Each of the models were individually calibrated with available material testing data and also re-calibrated assuming limited availability of test data. When full calibration is possible, more sophisticated constitutive models appear to provide more predictive maturity; however, when this data is not available (e.g. for an existing structure where representative test specimens may not be available), the expected maturity is reduced. Indeed, this hypothesis is supported by the simulations that indicate good agreement with measured experimental response quantities from the IRIS III tests with complex constitutive models and full calibration, and accordingly poor predictions when less complex models are used or when the more sophisticated models are poorly calibrated. Thus, predictions of structural response where complete material testing data is not obtainable should be understood as less predictive.

More Details

A greedy Galerkin method to efficiently select sensors for linear dynamical systems

Linear Algebra and Its Applications

Kouri, Drew P.; Udell, Madeleine; Hua, Zuhao

A key challenge in inverse problems is the selection of sensors to gather the most effective data. In this paper, we consider the problem of inferring the initial condition to a linear dynamical system and develop an efficient control-theoretical approach for greedily selecting sensors. Our method employs a Galerkin projection to reduce the size of the inverse problem, resulting in a computationally efficient algorithm for sensor selection. As a byproduct of our algorithm, we obtain a preconditioner for the inverse problem that enables the rapid recovery of the initial condition. We analyze the theoretical performance of our greedy sensor selection algorithm as well as the performance of the associated preconditioner. Finally, we verify our theoretical results on various inverse problems involving partial differential equations.

More Details

Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial

Mechanical Systems and Signal Processing

Foulk, James W.; Nemani, Venkat; Fink, Olga; Biggio, Luca; Huan, Xun; Wang, Yan; Du, Xiaoping; Zhang, Xiaoge; Hu, Chao

On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Towards this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage (case study 1) and the remaining useful life prediction of turbofan engines (case study 2).

More Details

Pulsed photoemission induced plasma breakdown

Journal of Physics D: Applied Physics

Iqbal, Asif; Bentz, Brian Z.; Youngman, Kevin Y.; Foulk, James W.; Zhou, Yang

This article characterises the effects of cathode photoemission leading to electrical discharges in an argon gas. We perform breakdown experiments under pulsed laser illumination of a flat cathode and observe Townsend to glow discharge transitions. The breakdown process is recorded by high-speed imaging, and time-dependent voltage and current across the electrode gap are measured for different reduced electric fields and laser intensities. We employ a 0D transient discharge model to interpret the experimental measurements. The fitted values of transferred photoelectron charge are compared with calculations from a quantum model of photoemission. The breakdown voltage is found to be lower with photoemission than without. When the applied voltage is insufficient for ion-induced secondary electron emission to sustain the plasma, laser driven photoemission can still create a breakdown where a sheath (i.e. a region near the electrode surfaces consisting of positive ions and neutrals) is formed. This photoemission induced plasma persists and decays on a much longer time scale ( ∼ 10 s μ s) than the laser pulse length ( 30 ps). The effects of different applied voltages and laser energies on the breakdown voltage and current waveforms are investigated. The discharge model can accurately predict the measured breakdown voltage curves, despite the existence of discrepancy in quantitatively describing the transient discharge current and voltage waveforms.

More Details

Transport and Energetics of Carbon Dioxide in Ionic Liquids at Aqueous Interfaces

Journal of Physical Chemistry B

Sharma, Arjun; Leverant, Calen J.; Richards, Danielle; Beamis, Christopher P.; Spoerke, Erik D.; Percival, Stephen J.; Rempe, Susan; Vanegas, Juan M.

A major hurdle in utilizing carbon dioxide (CO2) lies in separating it from industrial flue gas mixtures and finding suitable storage methods that enable its application in various industries. To address this issue, we utilized a combination of molecular dynamics simulations and experiments to investigate the behavior of CO2 in common room-temperature ionic liquids (RTIL) when in contact with aqueous interfaces. Our investigation of RTILs, [EMIM][TFSI] and [OMIM][TFSI], and their interaction with a pure water layer mimics the environment of a previously developed ultrathin enzymatic liquid membrane for CO2 separation. We analyzed diffusion constants and viscosity, which reveals that CO2 molecules exhibit faster mobility within the selected ILs compared to what would be predicted solely based on the viscosity of the liquids using the standard Einstein-Stokes relation. Moreover, we calculated the free energy of translocation for various species across the aqueous-IL interface, including CO2 and HCO3-. Free energy profiles demonstrate that CO2 exhibits a more favorable partitioning behavior in the RTILs compared to that in pure water, while a significant barrier hinders the movement of HCO3- from the aqueous layer. Experimental measurement of the CO2 transport in the RTILs corroborates the model. These findings strongly suggest that hydrophobic RTILs could serve as a promising option for selectively transporting CO2 from aqueous media and concentrating it as a preliminary step toward storage.

More Details

Increasing resilience with wastewater reuse

Nature Water

Klise, Katherine A.

Drinking water infrastructure in urban settings is increasingly affected by population growth and disruptions like extreme weather events. This study explores how the integration of direct wastewater reuse can help to maintain drinking water service when the system is compromised.

More Details

Nonlinear analysis and vibro-impact characteristics of a shaft-bearing assembly

International Journal of Non-Linear Mechanics

Saunders, Brian E.; Kuether, Robert J.; Vasconcellos, Rui M.G.; Abdelkefi, Abdessattar

Here this study investigates the nonlinear frequency response of a shaft-bearing assembly with vibro-impacts occurring at the bearing clearances. The formation of nonlinear behavior as system parameters change is examined, along with the effects of asymmetries in the nominal, inherently symmetric system. The primary effect of increasing the forcing magnitude or decreasing the contact gap sizes is the formation of grazing-induced chaotic solution branches occurring over a wide frequency range near each system resonance. The system's nominal setup has very hard contact stiffness and shows no evidence of isolas or superharmonic resonances over the frequency ranges of interest. Moderate contact stiffnesses cause symmetry breaking and introduce superharmonic resonance branches of primary resonances. Even if some primary resonances are not present due to the system's inherent symmetry, their superharmonic resonances still manifest. Branches of quasiperiodic isolas (isolated resonance branches) are also discovered, along with a cloud of isolas near a high-frequency resonance. Parameter asymmetries are found to produce a few significant changes in behavior: asymmetric linear stiffness, contact stiffness, and gap size could affect the behavior of primary resonant frequencies and isolas.

More Details

Understanding the Surprising Ionic Conductivity Maximum in Zn(TFSI)2 Water/Acetonitrile Mixture Electrolytes

Journal of Physical Chemistry Letters

Zhang, Yong; Carino, Emily; Hahn, Nathan T.; Becknell, Nigel; Mars, Julian; Han, Kee S.; Mueller, Karl T.; Toney, Michael; Maginn, Edward J.; Tepavcevic, Sanja

Aqueous electrolytes composed of 0.1 M zinc bis-(trifluoromethyl-sulfonyl)-imide (Zn-(TFSI)2) and acetonitrile (ACN) were studied using combined experimental and simulation techniques. The electrolyte was found to be electrochemically stable when the ACN V% is higher than 74.4. In addition, it was found that the ionic conductivity of the mixed solvent electrolytes changes as a function of ACN composition, and a maximum was observed at 91.7 V% of ACN although the salt concentration is the same. This behavior was qualitatively reproduced by molecular dynamics (MD) simulations. Detailed analyses based on experiments and MD simulations show that at high ACN composition the water network existing in the high water composition solutions breaks. As a result, the screening effect of the solvent weakens and the correlation among ions increases, which causes a decrease in ionic conductivity at high ACN V%. Furthermore, this study provides a fundamental understanding of this complex mixed solvent electrolyte system.

More Details

Two-Step Chemical Looping Cycle for Renewable NH3 Production Based on Non-Catalytic Co3Mo3N/Co6Mo6N Reactions

Advanced Energy Materials

Nguyen, Nhu P.; Kaur, Shaspreet; Bush, Hagan E.; Miller, James E.; Ambrosini, Andrea A.; Loutzenhiser, Peter G.

A two-step solar thermochemical looping cycle based on Co3Mo3N/Co6Mo6N reduction/nitridation reactions offers a pathway for green NH3 production that utilizes concentrated solar irradiation, H2O, and air as feedstocks. The NH3 production cycle steps both derive process heat from concentrated solar irradiation and encompass 1) the reduction of Co3Mo3N in H2 to Co6Mo6N and NH3; and 2) nitridation of Co6Mo6N to Co3Mo3N with N2. Co3Mo3N reduction/nitridation reactions are examined at different H2 and/or N2 partial pressures and temperatures. NH3 production is quantified in situ using liquid conductivity measurements coupled with mass spectrometry (MS). Solid-state characterization is performed to identify a surface oxygen layer that necessitates the addition of H2 during cycling to prevent surface oxidation by trace amounts of O2. H2 concentrations of > 5% H2/Ar and temperatures >500 °C are required to reduce Co3Mo3N to Co6Mo6N and form NH3 at 1 bar. Complete regeneration of Co3Mo3N from Co6Mo6N is achieved at conditions of 700 °C under 25–75% H2/N2. H2 pressure-swings are observed to increase NH3 production during Co3Mo3N reduction. In conclusion, the results represent the first comprehensive characterization of and definitive non-catalytic production of NH3 via chemical looping with metal nitrides and provide insights for technology development.

More Details

A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data

IEEE Journal of Photovoltaics

Azzolini, Joseph A.; Reno, Matthew J.; Yusuf, Jubair

Before residential photovoltaic (PV) systems are interconnected with the grid, various planning and impact studies are conducted on detailed models of the system to ensure safety and reliability are maintained. However, these model-based analyses can be time-consuming and error-prone, representing a potential bottleneck as the pace of PV installations accelerates. Data-driven tools and analyses provide an alternate pathway to supplement or replace their model-based counterparts. In this article, a data-driven algorithm is presented for assessing the thermal limitations of PV interconnections. Using input data from residential smart meters, and without any grid models or topology information, the algorithm can determine the nameplate capacity of the service transformer supplying those customers. The algorithm was tested on multiple datasets and predicted service transformer capacity with >98% accuracy, regardless of existing PV installations. This algorithm has various applications from model-free thermal impact analysis for hosting capacity studies to error detection and calibration of existing grid models.

More Details

Frequency combs in optically injected terahertz ring quantum cascade lasers

APL Photonics

Istiak Khan, Istiak; Xiao, Zhenyang; Addamane, Sadhvikas J.; Burghoff, David

Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more.

More Details

pvlib iotools—Open-source Python functions for seamless access to solar irradiance data

Solar Energy

Jensen, Adam R.; Anderson, Kevin S.; Holmgren, William F.; Mikofski, Mark A.; Hansen, Clifford; Boeman, Leland J.; Loonen, Roel

Access to accurate solar resource data is critical for numerous applications, including estimating the yield of solar energy systems, developing radiation models, and validating irradiance datasets. However, lack of standardization in data formats and access interfaces across providers constitutes a major barrier to entry for new users. pvlib python's iotools subpackage aims to solve this issue by providing standardized Python functions for reading local files and retrieving data from external providers. All functions follow a uniform pattern and return convenient data outputs, allowing users to seamlessly switch between data providers and explore alternative datasets. The pvlib package is community-developed on GitHub: https://github.com/pvlib/pvlib-python. As of pvlib python version 0.9.5, the iotools subpackage supports 12 different datasets, including ground measurement, reanalysis, and satellite-derived irradiance data. The supported ground measurement networks include the Baseline Surface Radiation Network (BSRN), NREL MIDC, SRML, SOLRAD, SURFRAD, and the US Climate Reference Network (CRN). Additionally, satellite-derived and reanalysis irradiance data from the following sources are supported: PVGIS (SARAH & ERA5), NSRDB PSM3, and CAMS Radiation Service (including McClear clear-sky irradiance).

More Details

Data Validation Experiments with a Computer-Generated Imagery Dataset for International Nuclear Safeguards

ESARDA Bulletin

Gastelum, Zoe N.; Shead, Timothy M.; Marshall, Matthew

Computer vision models have great potential as tools for international nuclear safeguards verification activities, but off-the-shelf models require fine-tuning through transfer learning to detect relevant objects. Because open-source examples of safeguards-relevant objects are rare, and to evaluate the potential of synthetic training data for computer vision, we present the Limbo dataset. Limbo includes both real and computer-generated images of uranium hexafluoride containers for training computer vision models. We generated these images iteratively based on results from data validation experiments that are detailed here. The findings from these experiments are applicable both for the safeguards community and the broader community of computer vision research using synthetic data.

More Details

Customized predictions of the installed cost of behind-the-meter battery energy storage systems

Energy Reports

Benson, Andrew G.

Behind-the-meter (BTM) battery energy storage systems (BESS) are undergoing rapid deployment. Simple equations to estimate the installed cost of BTM BESS are often necessary when a rigorous, bottom-up cost estimate is not available or not appropriate, in applications such as energy system modeling, informing a BESS sizing decision, and cost benchmarking. Drawing on project-level data from California, I estimate several predictive regression models of the installed cost of a BTM BESS as a function of energy capacity and power capacity. The models are evaluated for in-sample goodness-of-fit and out-of-sample predictive accuracy. The results of these analyses indicate stronger empirical support for models with natural log transformations of installed cost, energy, and power as compared against widely-used models that posit a linear relationship among the untransformed versions of these variables. Building on these results, I present a logarithmic model that can predict installed cost conditional on energy capacity, power capacity, AC or DC coupling with distributed generation, customer sector, and local wages for electricians. I document how the model can be easily extrapolated to future years, either with forecasts from other sources or by re-estimating the parameters with the latest data.

More Details

Predicting electronic structures at any length scale with machine learning

npj Computational Materials

Fiedler, Lenz; Modine, Normand A.; Schmerler, Steve; Vogel, Dayton J.; Popoola, Gabriel A.; Thompson, A.P.; Rajamanickam, Sivasankaran; Cangi, Attila

The properties of electrons in matter are of fundamental importance. They give rise to virtually all material properties and determine the physics at play in objects ranging from semiconductor devices to the interior of giant gas planets. Modeling and simulation of such diverse applications rely primarily on density functional theory (DFT), which has become the principal method for predicting the electronic structure of matter. While DFT calculations have proven to be very useful, their computational scaling limits them to small systems. We have developed a machine learning framework for predicting the electronic structure on any length scale. It shows up to three orders of magnitude speedup on systems where DFT is tractable and, more importantly, enables predictions on scales where DFT calculations are infeasible. Our work demonstrates how machine learning circumvents a long-standing computational bottleneck and advances materials science to frontiers intractable with any current solutions.

More Details

Synchronous micromechanically resonant programmable photonic circuits

Nature Communications

Leenheer, Andrew J.; Dominguez, Daniel; Eichenfield, Matt; Dong, Mark; Boyle, Julia M.; Palm, Kevin J.; Zimmermann, Matthew; Witte, Alex; Gilbert, Gerald; Englund, Dirk

Programmable photonic integrated circuits (PICs) are emerging as powerful tools for control of light, with applications in quantum information processing, optical range finding, and artificial intelligence. Low-power implementations of these PICs involve micromechanical structures driven capacitively or piezoelectrically but are often limited in modulation bandwidth by mechanical resonances and high operating voltages. Here we introduce a synchronous, micromechanically resonant design architecture for programmable PICs and a proof-of-principle 1×8 photonic switch using piezoelectric optical phase shifters. Our design purposefully exploits high-frequency mechanical resonances and optically broadband components for larger modulation responses on the order of the mechanical quality factor Q m while maintaining fast switching speeds. We experimentally show switching cycles of all 8 channels spaced by approximately 11 ns and operating at 4.6 dB average modulation enhancement. Future advances in micromechanical devices with high Qm, which can exceed 10000, should enable an improved series of low-voltage and high-speed programmable PICs.

More Details

Interface potentials inside solid-state batteries: Origins and implications

MRS Bulletin

Qi, Yue; Swift, Michael W.; Fuller, Elliot J.; Talin, Albert A.

Interface resistance has become a significant bottleneck for solid-state batteries (SSBs). Most studies of interface resistance have focused on extrinsic mechanisms such as interface reactions and imperfect contact between electrodes and solid electrolytes. Interface potentials are an important intrinsic mechanism that is often ignored. Here, we highlight Kelvin probe force microscopy (KPFM) as a tool to image the local potential at interfaces inside SSBs, examining the existing literature and discussing challenges in interpretation. Drawing analogies with electron transport in metal/semiconductor interfaces, we showcase a formalism that predicts intrinsic ionic resistance based on the properties of the contacting phases, and we emphasize that future battery designs should start from material pairs with low intrinsic resistance. We conclude by outlining future directions in the study of interface potentials through both theory and experiment. Graphic abstract: [Figure not available: see fulltext.]

More Details

Effects of hydrogen isotope type on oxidation rates for trace releases

Fire Safety Journal

Shurtz, Randy C.; Brown, Alexander L.; Takahashi, Lynelle K.; Coker, Eric N.

The fraction of tritium converted to the water form in a fire scenario is one of the metrics of greatest interest for radiological safety assessments. The conversion fraction is one of the prime variables contributing to the hazard assessment. This paper presents measurements of oxidation rates for the non-radioactive hydrogen isotopes (protium and deuterium) at sub-flammable concentrations that are typical of many of the most likely tritium release scenarios. These measurements are fit to a simplified 1-step kinetic rate expression, and the isotopic trends for protium and deuterium are extrapolated to produce a model appropriate for tritium. The effects of the new kinetic models are evaluated via CFD simulations of an ISO-9705 standard room fire that includes a trace release of hydrogen isotope (tritium), illustrating the high importance of the correct (measurement-based) kinetics to the outcome of the simulated conversion.

More Details

Discrete element model for powder grain interactions under high compressive stress

International Journal of Fracture

Silling, Stewart

A reduced order, nonlocal model is proposed for the contact force between initially spherical particles under compression. The model in effect provides the normal component of the interaction force between elements in the discrete element method (DEM). It is applicable to high relative density and large stress in powder compaction. It takes into account the mutual interaction between multiple points of contact, in contrast to the usual assumption in DEM of pair interactions. The mathematical form of the model is derived from a variational formulation that leads to the momentum balance for the forces on each grain. The model is calibrated mainly using detailed three dimensional peridynamic simulations of single grains under compressive loading by rigid plates that move radially with prescribed velocity. This calibration takes into account the large deformation and fracture of the grains. The interaction model also includes terms for the unloading behavior and adhesion. As validation, the model is applied to test data on the compaction of microcrystalline cellulose bulk powder.

More Details

ProvSec: Open Cybersecurity System Provenance Analysis Benchmark Dataset with Labels

International Journal of Networked and Distributed Computing

Shrestha, Madhukar; Kim, Yonghyun; Oh, Jeehyun; Rhee, Junghwan (John); Choe, Yung R.; Zuo, Fei; Park, Myungah; Qian, Gang

System provenance forensic analysis has been studied by a large body of research work. This area needs fine granularity data such as system calls along with event fields to track the dependencies of events. While prior work on security datasets has been proposed, we found a useful dataset of realistic attacks and details that are needed for high-quality provenance tracking is lacking. We created a new dataset of eleven vulnerable cases for system forensic analysis. It includes the full details of system calls including syscall parameters. Realistic attack scenarios with real software vulnerabilities and exploits are used. For each case, we created two sets of benign and adversary scenarios which are manually labeled for supervised machine-learning analysis. In addition, we present an algorithm to improve the data quality in the system provenance forensic analysis. We demonstrate the details of the dataset events and dependency analysis of our dataset cases.

More Details

Characterizing dynamic test fixtures through the modal projection error

Mechanical Systems and Signal Processing

Rouse, Jerry W.

Across many industries and engineering disciplines, systems of components are designed and deployed into their operational environments. It is the desire of the engineer to be able to predict if the component or system will survive its operational environment or if the component will fail due to mechanical stresses. One method to determine if the component will survive the operational environment is to expose the component to a simulation of the environment in a laboratory. One difficulty in executing such a test is that the component may not have the same boundary condition in both the laboratory and operational configurations. This paper presents a novel method of quantifying the error in the modal domain that occurs from the impedance difference between the laboratory test fixture and the operational configuration. The error is calculated from the projection from one mode shape space to the other, and the error is in terms of each mode of the operational configuration. The error provides insight into the effectiveness of the test fixture with respect to the ability to recreate the individual mode shapes of the operational configuration. A case study is presented to show the error in the modal projection between two configurations is a lower limit for the error that can be achieved by a laboratory test.

More Details

Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs

Nature Communications

Gallis, Dorina F.S.; Deneff, Jacob I.; Rohwer, Lauren E.S.; Butler, Kimberly S.; Kaehr, Bryan J.; Vogel, Dayton J.; Luk, Ting S.; Cruz-Cabrera, Alvaro A.; Reyes, Raphael A.; Martin, James E.

Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform’s relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.

More Details

The brain’s unique take on algorithms

Nature Communications

Aimone, James B.; Parekh, Ojas D.

Perspectives for understanding the brain vary across disciplines and this has challenged our ability to describe the brain’s functions. In this comment, we discuss how emerging theoretical computing frameworks that bridge top-down algorithm and bottom-up physics approaches may be ideally suited for guiding the development of neural computing technologies such as neuromorphic hardware and artificial intelligence. Furthermore, we discuss how this balanced perspective may be necessary to incorporate the neurobiological details that are critical for describing the neural computational disruptions within mental health and neurological disorders.

More Details

Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts

Microbial Cell Factories

Adamczyk, Paul A.; Gladden, John M.; Coradetti, Samuel; Liu, Di; Gao, Yuqian; Otoupal, Peter B.; Geiselman, Gina M.; Webb-Robertson, Bobbie J.M.; Burnet, Meagan C.; Kim, Young M.; Burnum-Johnson, Kristin E.; Magnuson, Jon

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.

More Details

Modeling single-molecule stretching experiments using statistical thermodynamics

Physical Review E

Buche, Michael R.; Rimsza, Jessica

Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations describing these experiments are valuable, and these relations can be obtained through the statistical thermodynamics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be included in the idealized model system. Though the model for the stretched molecule might be exactly solvable, including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness, the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing. Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate approximations for the full model system that includes both the molecule and the device. The asymptotic theories are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics calculations of a single polyethylene chain.

More Details

Genome sequence and characterization of a novel Pseudomonas putida phage, MiCath

Scientific Reports

Jaryenneh, James D.; Schoeniger, Joseph S.; Mageeney, Catherine M.

Pseudomonads are ubiquitous bacteria with importance in medicine, soil, agriculture, and biomanufacturing. We report a novel Pseudomonas putida phage, MiCath, which is the first known phage infecting P. putida S12, a strain increasingly used as a synthetic biology chassis. MiCath was isolated from garden soil under a tomato plant using P. putida S12 as a host and was also found to infect four other P. putida strains. MiCath has a ~ 61 kbp double-stranded DNA genome which encodes 97 predicted open reading frames (ORFs); functions could only be predicted for 48 ORFs using comparative genomics. Functions include structural phage proteins, other common phage proteins (e.g., terminase), a queuosine gene cassette, a cas4 exonuclease, and an endosialidase. Restriction digestion analysis suggests the queuosine gene cassette encodes a pathway capable of modification of guanine residues. When compared to other phage genomes, MiCath shares at most 74% nucleotide identity over 2% of the genome with any sequenced phage. Overall, MiCath is a novel phage with no close relatives, encoding many unique gene products.

More Details

Complementing a continuum thermodynamic approach to constitutive modeling with symbolic regression

Journal of the Mechanics and Physics of Solids

Garbrecht, Karl; Birky, Donovan; Lester, Brian T.; Emery, John M.; Hochhalter, Jacob

An interpretable machine learning method, physics-informed genetic programming-based symbolic regression (P-GPSR), is integrated into a continuum thermodynamic approach to developing constitutive models. The proposed strategy for combining a thermodynamic analysis with P-GPSR is demonstrated by generating a yield function for an idealized material with voids, i.e., the Gurson yield function. First, a thermodynamic-based analysis is used to derive model requirements that are exploited in a custom P-GPSR implementation as fitness criteria or are strongly enforced in the solution. The P-GPSR implementation improved accuracy, generalizability, and training time compared to the same GPSR code without physics-informed fitness criteria. The yield function generated through the P-GPSR framework is in the form of a composite function that describes a class of materials and is characteristically more interpretable than GPSR-derived equations. The physical significance of the input functions learned by P-GPSR within the composite function is acquired from the thermodynamic analysis. Fundamental explanations of why the implemented P-GPSR capabilities improve results over a conventional GPSR algorithm are provided.

More Details

A Workflow for Accelerating Multimodal Data Collection for Electrodeposited Films

Integrating Materials and Manufacturing Innovation

Bassett, Kimberly L.; Watkins, Tylan; Coleman, Jonathan J.; Bianco, Nathan R.; Bailey, Lauren S.; Pillars, Jamin R.; Williams, Samuel G.; Babuska, Tomas F.; Curry, John; Delrio, F.W.; Henriksen, Amelia; Garland, Anthony; Hall, Justin; Boyce, Brad L.; Krick, Brandon A.

Future machine learning strategies for materials process optimization will likely replace human capital-intensive artisan research with autonomous and/or accelerated approaches. Such automation enables accelerated multimodal characterization that simultaneously minimizes human errors, lowers costs, enhances statistical sampling, and allows scientists to allocate their time to critical thinking instead of repetitive manual tasks. Previous acceleration efforts to synthesize and evaluate materials have often employed elaborate robotic self-driving laboratories or used specialized strategies that are difficult to generalize. Herein we describe an implemented workflow for accelerating the multimodal characterization of a combinatorial set of 915 electroplated Ni and Ni–Fe thin films resulting in a data cube with over 160,000 individual data files. Our acceleration strategies do not require manufacturing-scale resources and are thus amenable to typical materials research facilities in academic, government, or commercial laboratories. The workflow demonstrated the acceleration of six characterization modalities: optical microscopy, laser profilometry, X-ray diffraction, X-ray fluorescence, nanoindentation, and tribological (friction and wear) testing, each with speedup factors ranging from 13–46x. In addition, automated data upload to a repository using FAIR data principles was accelerated by 64x.

More Details

Trajectory sampling and finite-size effects in first-principles stopping power calculations

npj Computational Materials

Kononov, Alina K.; Hentschel, Thomas W.; Hansen, Stephanie B.; Baczewski, Andrew D.

Real-time time-dependent density functional theory (TDDFT) is presently the most accurate available method for computing electronic stopping powers from first principles. However, obtaining application-relevant results often involves either costly averages over multiple calculations or ad hoc selection of a representative ion trajectory. We consider a broadly applicable, quantitative metric for evaluating and optimizing trajectories in this context. This methodology enables rigorous analysis of the failure modes of various common trajectory choices in crystalline materials. Although randomly selecting trajectories is common practice in stopping power calculations in solids, we show that nearly 30% of random trajectories in an FCC aluminum crystal will not representatively sample the material over the time and length scales feasibly simulated with TDDFT, and unrepresentative choices incur errors of up to 60%. We also show that finite-size effects depend on ion trajectory via “ouroboros” effects beyond the prevailing plasmon-based interpretation, and we propose a cost-reducing scheme to obtain converged results even when expensive core-electron contributions preclude large supercells. This work helps to mitigate poorly controlled approximations in first-principles stopping power calculations, allowing 1–2 order of magnitude cost reductions for obtaining representatively averaged and converged results.

More Details

Non-canonical d-xylose and l-arabinose metabolism via d-arabitol in the oleaginous yeast Rhodosporidium toruloides

Microbial Cell Factories

Adamczyk, Paul A.; Gladden, John M.; Coradetti, Samuel

R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical l-arabinose and d-xylose metabolism proceeding through d-arabitol and d-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that d-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative d-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of d-xylose to d-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative d-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative l-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.

More Details

Increased drought and extreme events over continental United States under high emissions scenario

Scientific Reports

Gautam, Sagar; Mishra, Umakant; Scown, Corinne D.; Ghimire, Rajan

The frequency, severity, and extent of climate extremes in future will have an impact on human well-being, ecosystems, and the effectiveness of emissions mitigation and carbon sequestration strategies. The specific objectives of this study were to downscale climate data for US weather stations and analyze future trends in meteorological drought and temperature extremes over continental United States (CONUS). We used data from 4161 weather stations across the CONUS to downscale future precipitation projections from three Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase Six (CMIP6), specifically for the high emission scenario SSP5 8.5. Comparing historic observations with climate model projections revealed a significant bias in total annual precipitation days and total precipitation amounts. The average number of annual precipitation days across CONUS was projected to be 205 ± 26, 184 ± 33, and 181 ± 25 days in the BCC, CanESM, and UKESM models, respectively, compared to 91 ± 24 days in the observed data. Analyzing the duration of drought periods in different ecoregions of CONUS showed an increase in the number of drought months in the future (2023–2052) compared to the historical period (1989–2018). The analysis of precipitation and temperature changes in various ecoregions of CONUS revealed an increased frequency of droughts in the future, along with longer durations of warm spells. Eastern temperate forests and the Great Plains, which encompass the majority of CONUS agricultural lands, are projected to experience higher drought counts in the future. Drought projections show an increasing trend in future drought occurrences due to rising temperatures and changes in precipitation patterns. Our high-resolution climate projections can inform policy makers about the hotspots and their anticipated future trajectories.

More Details

Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins

Scientific Reports

LaBauve, Annette E.; Saada, Edwin A.; Jones, Iris K.A.; Mosesso, Richard A.; Noureddine, Achraf; Techel, Jessica L.; Gomez, Andrew G.; Collette, Nicole; Sherman, Michael B.; Serda, Rita E.; Butler, Kimberly S.; Brinker, C.J.; Schoeniger, Joseph S.; Sasaki, Darryl; Negrete, Oscar N.

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann–Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.

More Details

Model predictive control simulations with block-hierarchical differential–algebraic process models

Journal of Process Control

Parker, Robert B.; Nicholson, Bethany L.; Siirola, John D.; Biegler, Lorenz T.

Hierarchical optimization modeling in an algebraic modeling environment facilitates construction of large models with many interchangeable sub-models. However, for dynamic simulation and optimization applications, a flattened structure that preserves time indexing is preferred. To convert from a structure that facilitates model construction to a structure that facilitates dynamic optimization, the concept of reshaping an optimization model is introduced along with the recently developed utilities in the Pyomo algebraic modeling environment that make this possible. The application of these utilities to model predictive control simulations and partial differential equation (PDE) discretization stability analysis is discussed, and two challenging nonlinear model predictive control case studies are presented to demonstrate the advantages of this approach.

More Details

Deep material network via a quilting strategy: visualization for explainability and recursive training for improved accuracy

npj Computational Materials

Dingreville, Remi; Shin, Dongil; Alberdi, Ryan; Lebensohn, Ricardo A.

Recent developments integrating micromechanics and neural networks offer promising paths for rapid predictions of the response of heterogeneous materials with similar accuracy as direct numerical simulations. The deep material network is one such approaches, featuring a multi-layer network and micromechanics building blocks trained on anisotropic linear elastic properties. Once trained, the network acts as a reduced-order model, which can extrapolate the material’s behavior to more general constitutive laws, including nonlinear behaviors, without the need to be retrained. However, current training methods initialize network parameters randomly, incurring inevitable training and calibration errors. Here, we introduce a way to visualize the network parameters as an analogous unit cell and use this visualization to “quilt” patches of shallower networks to initialize deeper networks for a recursive training strategy. The result is an improvement in the accuracy and calibration performance of the network and an intuitive visual representation of the network for better explainability.

More Details

Low Threshold, Long Wavelength Interband Cascade Lasers With High Voltage Efficiencies

IEEE Journal of Quantum Electronics

Massengale, Jeremy A.; Shen, Yixuan; Yang, Rui Q.; Hawkins, Samuel D.; Muhowski, Aaron

We report on the substantial advancement of long wavelength InAs-based interband cascade lasers (ICLs) utilizing advanced waveguides formed from hybrid cladding layers and targeting the 10-12μm wavelength region. Modifications in the hole injector have improved carrier transport in these ICLs, resulting in significantly reduced threshold voltages (Vth) as low as 3.62 V at 80 K. Consequently, much higher voltage efficiencies were observed, peaking at about 73% at 10.3μm and allowing for large output powers of more than 100 mW/facet. Also, low threshold current densities (Jth) of 8.8 A/cm2 in cw mode and 7.6 A/cm2 in pulsed mode near 10μm were observed; a result of adjustments in the GaInSb hole well composition intended to reduce the overall strain accumulation in the ICL. Furthermore, an ICL from the second wafer operating at a longer wavelength achieved a peak voltage efficiency of 57% at 11.7μm, with a peak output power of more than 27 mW/facet. This ICL went on to lase beyond 12μm in both cw and pulsed modes, representing a new milestone in long wavelength coverage for ICLs with the standard W-QW active region.

More Details

Micro-beam bending of FCC bicrystals: A comparison between defect dynamics simulations and experiments

Materialia

Aragon, Nicole; Na, Ye E.; Nguyen, Phu C.; Jang, Dongchan; Ryu, Ill

To understand the role of the grain boundary (GB) in plasticity at small scale, a concurrently coupled mesoscale plasticity model was developed to simulate micro-bending of bicrystalline micron-sized beams. By coupling dislocation dynamics (DD) with a finite element model (FEM), a novel defect dynamics model provides the means to investigate intricate interactions between dislocations and GBs under various loading conditions. Our simulations of micro-bending agree well with corresponding micro-bending experiments, and they show that mechanical response of bicrystals could have not only hardening but also softening depending on the characters of the GB. In addition, changing the location of the GB in the microbeams results in different mechanical responses; GBs located at the neutral plane show softening compared to single crystals, while inclined GBs located halfway along the length of the beam show little effect. Simulation results could provide a clear picture on detailed dislocation-GB interactions, and quantitative resolved shear stress analysis supplemented by dislocation density distribution is used to analyze the mechanical response of bicrystalline samples.

More Details

PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling

Environmental Modelling and Software

Jakeman, John D.

PyApprox is a Python-based one-stop-shop for probabilistic analysis of numerical models such as those used in the earth, environmental and engineering sciences. Easy to use and extendable tools are provided for constructing surrogates, sensitivity analysis, Bayesian inference, experimental design, and forward uncertainty quantification. The algorithms implemented represent a wide range of methods for model analysis developed over the past two decades, including recent advances in multi-fidelity approaches that use multiple model discretizations and/or simplified physics to significantly reduce the computational cost of various types of analyses. An extensive set of Benchmarks from the literature is also provided to facilitate the easy comparison of new or existing algorithms for a wide range of model analyses. This paper introduces PyApprox and its various features, and presents results demonstrating the utility of PyApprox on a benchmark problem modeling the advection of a tracer in groundwater.

More Details

The Structural Evaluation Test Unit (SETU) Benchmark Test Results

Bignell, John; Ammerman, Douglas

A series of extensively instrumented tests was performed on the Structural Evaluation Test Unit in the early 1990s. The purpose of these tests was to determine the response of a minimally designed cask to impacts that were more severe than the design basis impact. This test series provides an excellent opportunity for benchmarking explicit dynamic finite element analysis programs for behaviors that may be experienced by casks during regulatory and extra-regulatory impact events. This report provides the results of the four tests that were conducted. It is meant to go along with a companion report that defines the benchmark problem and gives the locations for the instrumentation and inspection points.

More Details

The Model Assessment Wizard (MAW): A Visualization System for Ontology Constraint Violations

Gray, Kathryn; Murdock, Jaimie M.; Carroll, Edward R.

Validation and verification of engineering models is important to understand potential weaknesses and issues in the model. This is accomplished through the application of constraint logic to the model. These models and the constraints put upon them can be represented through a graph structure. Here we give a visualization system to aid users understanding, locating, and fixing constraint violations in their systems. We give users several ways to narrow down on the specific errors and parts of the graph they’re interested in. Users have the opportunity to choose the types of errors that will be shown in the graph. Clustering is applied to the graph to help users narrow down their searches. Several other graph interactions are given to support discovery of constraint violations.

More Details

PR100: Estimated Medium- and Heavy-Duty Electric Vehicle Adoption and Load Estimation in Puerto Rico through 2050

Garrett, Richard A.; Moog, Emily; Mammoli, Andrea A.; Lave, Matt

The 2-year Puerto Rico Grid Resilience and Transition to 100% Renewable Energy Study analyzed stakeholder-driven pathways to Puerto Rico’s clean energy future. Outputs relating to electricity demand modeling were partially informed by estimates of electric vehicle adoption across all classes of medium- and heavy-duty vehicles (MHDVs), and the ensuing charging loads. To create these estimates, the team developed a transportation model for MHDVs in Puerto Rico to estimate the amount and geospatial distribution of energy used. Charging schedules for the different end uses of MHDVs were then used to construct electric load shapes assuming a portion of those vehicles would be replaced by battery electric counterparts. Study results showed that, by 2050, electric vehicles may constitute roughly 50% of the MHDV population in Puerto Rico. The resulting electrical demand curve attributable to MHDV charging showed that, for solar energy-based electrical systems with limited energy storage, this demand may create challenges unless appropriately managed either on the demand or supply side.

More Details

Seismoacoustic Data Fusion for Ground Coupled Airwaves: a FACT Case Study for Calibration and Array Processing

Wynn, Nora C.R.; Berg, Elizabeth M.; Koch, Clinton

This report covers an inquiry into seismoacoustic array processing using infrasound arrivals combined with resulting Ground Coupled Airwaves (GCA) that are present on collocated seismic sensors. In preparation, data calibration and denoising is completed for a seismoacoustic sensor array that was deployed at the Facility for Acceptance, Calibration, and Testing on Kirtland Airforce Base from August through September of 2021. The events of interest for this study are small, local explosive sources that lead to short duration, impulsive signals on the instruments. The goal is to determine if combining infrasound signals with the corresponding GCAs on collocated seismic sensors can be used to improve the results returned by automated signal detection and characterization (e.g., back azimuth estimates). Preparation for seismic and infrasound data involves removing the instrument response so that sensors have flat power spectra over the frequency range 0.1-10 Hz, where signal from events of interest may be detected. After instrument response removal, deployment conditions specific to this array require a retrospective noise analysis to determine station emplacement characteristics. Once all data is calibrated, a manual search is performed for possible GCA arrivals across the seismoacoustic network. These arrivals are then processed through beamforming and subsequent event identification, resulting in a catalogue of seismoacoustic GCA arrivals with corresponding back azimuth and trace velocity estimations.

More Details

Reading Between the Lines: Measuring the Effects of Linguistic-Based Indicators of Deception on Experts’ Identification and Categorization of Disinformation

Windsor, Matthew B.; Dickson, Danielle S.; Emery, Benjamin F.; Gunda, Thushara

There is currently very limited research into how experts analyze and assess potentially fraudulent content in their expertise areas, and most research within the disinformation space involves very limited text samples (e.g., news headlines). The overarching goal of the present study was to explore how an individual’s psychological profile and the linguistic features in text might influence an expert’s ability to discern disinformation/fraudulent content in academic journal articles. At a high level, the current design tasked experts with reading journal articles from their area of expertise and indicating if they thought an article was deceptive or not. Half the articles they read were journal papers that had been retracted due to academic fraud. Demographic and psychological inventory data collected on the participants was combined with performance data to generate insights about individual expert susceptibility to deception. Our data show that our population of experts were unable to reliably detect deception in formal technical writing. Several psychological dimensions such as comfort with uncertainty and intellectual humility may provide some protection against deception. This work informs our understanding of expert susceptibility to potentially fraudulent content within official, technical information and can be used to inform future mitigative efforts and provide a building block for future disinformation work.

More Details

Strategic Petroleum Reserve Enhanced Monitoring Compendium (FY23)

Moriarty, Dylan M.

The Strategic Petroleum Reserve (SPR) is the world’s largest supply of emergency crude oil. The reserve consists of four sites in Louisiana and Texas. Each site stores crude in deep, underground salt caverns. It is the mission of the SPR’s Enhanced Monitoring Program to examine available sensing data to inform our understanding of each site. This report discusses the monitoring data, processes, and results for each of the four sites for fiscal year 2023.

More Details

The Structural Evaluation Test Unit (SETU) Benchmark Problem Statement

Bignell, John; Ammerman, Douglas

A series of extensively instrumented tests was performed on the Structural Evaluation Test Unit in the early 1990s. The purpose of these tests was to determine the response of a minimally designed cask to impacts that were more severe than the design basis impact. This test series provides an excellent opportunity for benchmarking explicit dynamic finite element analysis programs for behaviors that may be experienced by casks during regulatory and extra-regulatory impact events. This report provides the parameters of the test unit, the locations of instrumentation, the locations of inspection points, and the parameters of the four tests that were conducted. A companion report provides the results of the tests.

More Details

DECOVALEX-2023: Task F2-Salt Final Report

Laforce, Tara C.; Bartol, Jeroen; Becker, Dirk-Alexander; Benbow, Steven; Bond, Alexander; Dietl, Carlo R.; Frank, Tanja; Jayne, Richard; Kock, Ingo; Magri, Fabiano; Nicholas, Josh; Pekala, Marek; Stauffer, Philip H.; Stein, Emily; Stone, Jodie; Wolf, Jens

The subject of Task F of DECOVALEX-2023 concerns performance assessment modelling of radioactive waste disposal in deep mined repositories. The primary objectives of Task F are to build confidence in the models, methods, and software used for performance assessment (PA) of deep geologic nuclear waste repositories, and/or to bring to the fore additional research and development needed to improve PA methodologies. In Task F2-(salt), these objectives have been accomplished through staged development and comparison of the models and methods used by participating teams in their PA frameworks. Coupled-process submodels and deterministic simulations of the entire PA model for a reference scenario for waste disposal in domal salt have been conducted. The task specification has been updated continuously since the initiation of the project to reflect the staged development of the conceptual repository model and performance metrics.

More Details

Downhole Sensing and Event-Driven Sensor Fusion for Depth-of-Cut Based Autonomous Fault Response and Drilling Optimization

Boots, Byron; Sacks, Jacob; Choi, Kevin; Greenhill, Kathryn; Mazumdar, Anirban; Buerger, Stephen P.; Su, Jiann-Cherng

Achieving robust and efficient drilling is a critical part of reducing the cost of geothermal energy exploration and extraction. Drilling performance is often evaluated using one or more of three key metrics: depth of cut (DOC), rate of penetration (ROP), and mechanical specific energy (MSE). All three of these quantities are related to each other. DOC refers to the depth a bit penetrates into rock during drilling. This is an important quantity for estimating bit behavior. ROP is the simply the DOC multiplied by the rotational rate, and represents how quickly the drill bit is advancing through the ground. ROP is often the parameter used for drilling control and optimization. Finally, MSE provides insight into drilling efficiency and rock type. MSE calculations rely on ROP, drilling force, and drilling torque. Surface-based sensors at the top of the drill are often used to measure all these quantities. However, top-hole measurements can deviate substantially from the behavior at the bit due to lag, vibrations, and friction. Therefore, relying only on top-hole information can lead to suboptimal drilling control. In this work, we describe recent progress towards estimating ROP, DOC, and MSE using down-hole sensing. We assume down-hole measurements of torque, weight-on-bit (WOB). Our hypothesis is that these measurements can provide more rapid and accurate measures of drilling performance. We show how a multi-layer perceptron (MLP) machine learning algorithm can provide rapid and accurate performance when evaluated on experimental data taken from Sandia’s Hard Rock Drilling Facility. In addition, we implement our algorithms on an embedded system intended to emulate a bottom-hole-assembly for sensing and estimation. Our experimental results show that DOC can be estimated accurately and in real-time. These estimates when combined with measurements for rotary speed, torque, and force can provide improved estimates for ROP and MSE. These results have the potential to enable better drilling assessment, improved control, and extended component lifetimes.

More Details

Confidence Calibration Metrics

Hagopian, Kaylin; Plackowski, Nikki L.; Todd, Alyssa; Richards, John A.

This technical report serves to summarize a literature search conducted that covered confidence calibration. This report is meant to serve as a solid starting reference for individuals interested in learning more about the confidence calibration domain as well as for individuals more familiar with this work – as a summarizing document for calibration metrics is notably lacking in the literature. This report is not meant to serve as a comprehensive review of everything that has been done in this field – in fact, the reader is encouraged to look further into this domain. We describe confidence and calibration and discuss properties of good calibration metrics. We detail various calibration and calibration-tangential metrics, presenting equations, algorithms, parameters, and an analysis of strengths and weaknesses. We apply a subset of these metrics to eight proxy confidence assessment datasets. We examine the various metrics in the context of model confidence. Finally, we discuss promising future directions and outstanding questions.

More Details

Fast cycling of “anode-less”, redox-mediated Li-S flow batteries

Journal of Energy Storage

Foulk, James W.; Maraschky, Adam M.; Watt, John; Small, Leo J.

Redox flow batteries (RFBs) that incorporate solid energy-storing materials are attractive for high-capacity grid-scale energy storage due to their markedly higher theoretical energy densities compared to their fully liquid counterparts. However, this promise of higher energy density comes at the expense of rate capability. In this work we exploit a ZnO nanorod-decorated Ni foam scaffold to create a high surface area Li metal anode capable of rates up to 10 mA cm−2, a 10× improvement over traditional planar designs. The ZnO nanorods enhance Li metal wettability and promote uniform Li nucleation, allowing the RFB to be initially operated with a prelithiated (charged) anode, or with a safety-conscious, Li-less, fully discharged anode. 5 mgS cm−1 were cycled using a mediated S cathode, whereby redox mediators help oxidize and reduce solid S particles. At 2.4 mgS cm−2 and 10 mA cm−2, the RFB becomes limited by the mediation of solid S. Nevertheless, a respectable energy density of 20.3 Wh L−1 is demonstrated, allowing considerable increase if the S mediation rate can be further improved. Lessons learned here may be broadly applied to RFBs with alkali metal anodes, offering an avenue for safe, dense, grid-scale energy storage.

More Details

Challenges and Strategies for Testing Automation Practices at Sandia National Laboratories

Mundt, Miranda R.; Bisila, Jonathan; Milewicz, Reed M.; Teves, Joshua B.; Buche, Michael R.; Compton, Jonathan E.; Gates, Jason M.; Landin, Kirk T.; Lofstead, Gerald F.

Sandia National Laboratories is a premier United States national security laboratory which develops science-based technologies in areas such as nuclear deterrence, energy production, and climate change. Computing plays a key role in its diverse missions, and within that environment, Research Software Engineers (RSEs) and other scientific software developers utilize testing automation to ensure quality and maintainability of their work. We conducted a Participatory Action Research study to explore the challenges and strategies for testing automation through the lens of academic literature. Through the experiences collected and comparison with open literature, we identify these challenges in testing automation and then present strategies for mitigation grounded in evidence-based practice and experience reports that other, similar institutions can assess for their automation needs.

More Details

Critical Role of Water for Energy Transitions Technologies: A Literature Review

Gunda, Thushara; Valdez, Raquel; Houck, Daniel R.; Linville, Lisa

This report summarizes the water inputs associated with four technologies playing diverse roles in energy transitions: hydrogen, solar photovoltaics (PV), wind, and batteries. Information in this report is drawn from multiple sources, including peer-reviewed literature, industry and international agency reports, EcoInvent life cycle inventory database, and subject matter expert (SME) consultations. Where possible, insights that characterized water requirements for specific stages of the technology development (e.g., operations, manufacturing, and mining) were prioritized over broader cradle-to-gate assessment values. Furthermore, both direct and indirect water requirements (i.e., associated with associated energy inputs) were considered in this literature review.

More Details

Theory and Implementation of the Spectacular Nonlinear Viscoelastic Constitutive Model

Cundiff, K.N.; Buche, Michael R.; Talamini, Brandon; Grutzik, S.J.; Kropka, Jamie M.; Long, Kevin N.

This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively). The model form consists of two parts: a Helmholtz free energy functional and a nonlinear material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is derived from a series expansion about a reference state. Expressions for the stress and entropy functionals are derived from the Helmholtz free energy following the Rational Mechanics approach. The material clock depends on a simplified expression for the potential energy, which itself is a functional of the temperature and strain histories. This report describes the thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model, model verification for its implementation in LAMÉ, a user guide for its implementation in LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical details and a description of the procedure used to derive the simplified potential energy from the full expression for the potential energy. The goal of this report is create a convenient point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a reference manual for advanced users of the model.

More Details

Equation-based and data-driven modeling: Open-source software current state and future directions

Computers and Chemical Engineering

Gunnell, Lagrande; Nicholson, Bethany L.; Hedengren, John D.

Here, a review of current trends in scientific computing reveals a broad shift to open-source and higher-level programming languages such as Python and growing career opportunities over the next decade. Open-source modeling tools accelerate innovation in equation-based and data-driven applications. Significant resources have been deployed to develop data-driven tools (PyTorch, TensorFlow, Scikit-learn) from tech companies that rely on machine learning services to meet business needs while keeping the foundational tools open. Open-source equation-based tools such as Pyomo, CasADi, Gekko, and JuMP are also gaining momentum according to user community and development pace metrics. Integration of data-driven and principles-based tools is emerging. New compute hardware, productivity software, and training resources have the potential to radically accelerate progress. However, long-term support mechanisms are still necessary to sustain the momentum and maintenance of critical foundational packages.

More Details

The Global DAS Month of February 2023

Seismological Research Letters

Wuestefeld, Andreas; Spica, Zack J.; Aderhold, Kasey; Huang, Hsin-Hua; Ma, Kuo-Fong; Lai, Voon H.; Miller, Meghan; Urmantseva, Lena; Zapf, Daniel; Bowden, Daniel C.; Edme, Pascal; Kiers, Tjeerd; Rinaldi, Antonio P.; Tuinstra, Katinka; Jestin, Camille; Diaz-Meza, Sergio; Jousset, Philippe; Wollin, Christopher; Ugalde, Arantza; Ruiz Barajas, Sandra; Gaite, Beatriz; Currenti, Gilda; Prestifilippo, Michele; Araki, Eiichiro; Tonegawa, Takashi; De Ridder, Sjoerd; Nowacki, Andy; Lindner, Fabian; Schoenball, Martin; Wetter, Christoph; Zhu, Hong-Hu; Baird, Alan F.; Rorstadbotnen, Robin A.; Ajo-Franklin, Jonathan; Ma, Yuanyuan; Abbott, Robert; Hodgkinson, Kathleen M.; Porritt, Robert W.; Stanciu, Adrian C.; Podrasky, Agatha; Hill, David; Biondi, Biondo; Yuan, Siyuan; Bin LuoBin; Nikitin, Sergei; Morten, Jan P.; Dumitru, Vlad-Andrei; Lienhart, Werner; Cunningham, Erin; Wang, Herbert

During February 2023, a total of 32 individual distributed acoustic sensing (DAS) systems acted jointly as a global seismic monitoring network. The aim of this Global DAS Month campaign was to coordinate a diverse network of organizations, instruments, and file formats to gain knowledge and move toward the next generation of earthquake monitoring networks. During this campaign, 156 earthquakes of magnitude 5 or larger were reported by the U.S. Geological Survey and contributors shared data for 60 min after each event’s origin time. Participating systems represent a variety of manufacturers, a range of recording parameters, and varying cable emplacement settings (e.g., shallow burial, borehole, subaqueous, and dark fiber). Monitored cable lengths vary between 152 and 120,129 m, with channel spacing between 1 and 49 m. The data has a total size of 6.8 TB, and are available for free download. Finally, organizing and executing the Global DAS Month has produced a unique dataset for further exploration and highlighted areas of further development for the seismological community to address.

More Details

Bayesian optimal experimental design for constitutive model calibration

International Journal of Mechanical Sciences

Ricciardi, Denielle; Seidl, D.T.; Lester, Brian T.; Jones, E.M.C.; Jones, A.R.

Computational simulation is increasingly relied upon for high/consequence engineering decisions, which necessitates a high confidence in the calibration of and predictions from complex material models. However, the calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure—Interlaced Characterization and Calibration (ICC)—is introduced and demonstrated. Further, this framework leverages Bayesian optimal experimental design (BOED), which creates a line of communication between model calibration needs and data collection capabilities in order to optimize the information content gathered from the experiments for model calibration. Eventually, the ICC framework will be used in quasi real-time to actively control experiments of complex specimens for the calibration of a high-fidelity material model. This work presents the critical first piece of algorithm development and a demonstration in determining the optimal load path of a cruciform specimen with simulated data. Calibration results, obtained via Bayesian inference, from the integrated ICC approach are compared to calibrations performed by choosing the load path a priori based on human intuition, as is traditionally done. The calibration results are communicated through parameter uncertainties which are propagated to the model output space (i.e. stress–strain). In these exemplar problems, data generated within the ICC framework resulted in calibrated model parameters with reduced measures of uncertainty compared to the traditional approaches.

More Details

Effects of diffusion barriers on reaction wave stability in Co/Al reactive multilayers

Journal of Applied Physics

Abere, Michael J.; Reeves, Robert V.; Sobczak, Catherine E.; Choi, Hyein; Adams, David P.

Bimetallic, reactive multilayers are uniformly structured materials composed of alternating sputter-deposited layers that may be ignited to produce self-propagating mixing and formation reactions. These nanolaminates are most commonly used as rapid-release heat sources. The specific chemical composition at each metal/metal interface determines the rate of mass transport in a mixing and formation reaction. The inclusion of engineered diffusion barriers at each interface will not only inhibit solid-state mixing but also may impede the self-propagating reactions by introducing instabilities to wavefront morphology. This work examines the effect of adding diffusion barriers on the propagation of reaction waves in Co/Al multilayers. The Co/Al system has been shown to exhibit a reaction propagation instability that is dependent on the bilayer thickness, which allows for the occurrence of unstable modes in otherwise stable designs from the inclusion of diffusion barriers. Based on the known stability criteria in the Co/Al multilayer system, the way in which the inclusion of diffusion barriers changes a multilayer's heat of reaction, thermal conductivity, and material mixing mechanisms can be determined. These factors, in aggregate, lead to changes in the wavefront velocity and stability.

More Details

Classifying Topology in Photonic Heterostructures with Gapless Environments

Physical Review Letters

Cerjan, Alexander; Dixon, Kahlil Y.; Loring, Terry A.

Photonic topological insulators exhibit bulk-boundary correspondence, which requires that boundary-localized states appear at the interface formed between topologically distinct insulating materials. However, many topological photonic devices share a boundary with free space, which raises a subtle but critical problem as free space is gapless for photons above the light line. Here, we use a local theory of topological materials to resolve bulk-boundary correspondence in heterostructures containing gapless materials and in radiative environments. In particular, we construct the heterostructure’s spectral localizer, a composite operator based on the system’s real-space description that provides a local marker for the system’s topology and a corresponding local measure of its topological protection; both quantities are independent of the material’s bulk band gap (or lack thereof). Moreover, we show that approximating radiative outcoupling as material absorption overestimates a heterostructure’s topological protection. Importantly, as the spectral localizer is applicable to systems in any physical dimension and in any discrete symmetry class (i.e., any Altland-Zirnbauer class), our results show how to calculate topological invariants, quantify topological protection, and locate topological boundary-localized resonances in topological materials that interface with gapless media in general.

More Details

Morphology–Diffusivity Relationships in Fluorine-Free Random Terpolymers for Proton-Exchange Membranes

Macromolecules

Win, Max S.; Winey, Karen I.; Frischknecht, Amalie L.

Here, using atomistic molecular dynamics simulations, we investigate the morphology and transport properties of a new family of fluorine-free terpolymers designed as proton-exchange membranes. Simulated random terpolymers consist of three monomers with a 5-carbon backbone with a phenylsulfonate, phenyl, or no pendant group and have ion exchange capacities (IECs) ranging from 1.06–4.14 mmol/g. At a hydration level of 9, cluster analysis reveals macrophase separation between water and terpolymers with IEC < 2.1 mmol/g and continuous, percolated hydrophilic and hydrophobic nanoscale domains at higher IECs. Channel width distribution analysis of the percolated morphologies revealed that more hydrophobic units produce less uniform channels. Decreasing the surface area per sulfonate group and increasing the fractal dimension of the hydrophilic domains correlate with increased water diffusivity, due to a more acidic interface and more isotropic water channels. Relative to the previously studied phenylsulfonate homopolymer, these terpolymers with lower IECs have only modestly lower water diffusion, and we anticipate other advantages related to processability.

More Details

Probing topology in nonlinear topological materials using numerical K -theory

Physical Review. B

Cerjan, Alexander; Wong, Stephan M.; Loring, Terry A.

Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical $K$ -theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Here, our nonlinear spectral localizer framework yields a quantitative definition of topologically nontrivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials.

More Details

A hybrid chemical-biological approach can upcycle mixed plastic waste with reduced cost and carbon footprint

One Earth

Dou, Chang; Choudhary, Hemant; Wang, Zilong; Baral, Nawa R.; Mohan, Mood; Aguilar, Rolin A.; Holiday, Alexander; Banatao, D.R.; Singh, Seema; Scown, Corinne D.; Keasling, Jay D.; Simmons, Blake A.; Sun, Ning

Derived from renewable feedstocks, such as biomass, polylactic acid (PLA) is considered a more environmentally friendly plastic than conventional petroleum-based polyethylene terephthalate (PET). However, PLA must still be recycled, and its growing popularity and mixture with PET plastics at the disposal stage poses a cross-contamination threat in existing recycling facilities and results in low-value and low-quality recycled products. Hybrid upcycling has been proposed as a promising sustainable solution for mixed plastic waste, but its techno-economic and life cycle environmental performance remain understudied. Here we propose a hybrid upcycling approach using a biocompatible ionic liquid (IL) to first chemically depolymerize plastics and then convert the depolymerized stream via biological upgrading with no extra separation. We show that over 95% of mixed PET/PLA was depolymerized into the respective monomers, which then served as the sole carbon source for the growth of Pseudomonas putida, enabling the conversion of the depolymerized plastics into biodegradable polyhydroxyalkanoates (PHAs). In comparison to conventional commercial PHAs, the estimated optimal production cost and carbon footprint are reduced by 62% and 29%, respectively.

More Details

Postclosure Criticality Analysis Results

Price, Laura L.; Basurto, Eduardo; Taconi, Anna M.; Jones, Philip G.; Barela, Amanda; Davidson, Greg; Swinney, Mathew; Kucinski, Nicholas; Panicker, N.; Wysocki, Aaron; Alsaed, Halim; Sanders, Charlotta; Prouty, Jeralyn

The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. The evaluation of long-term performance of the repository may need to consider the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential for this situation to occur in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. DOE has been considering disposing of SNF in DPCs to avoid the costs and worker dose associated with repackaging the SNF currently stored in DPCs into repository-specific canisters. This report examines the consequences of postclosure criticality to provide technical support to DOE in developing a disposal plan.

More Details

Correlating the Viscosity and Rate of Water Diffusion in Semisolid Gel-Forming Aerosol Particles

ACS Earth and Space Chemistry

Sheldon, Craig S.; Salazar, Jorge; Palacios Diaz, Teresa; Morton, Katie; Davis, Ryan; Davies, James F.

Aerosol particles are known to exist in highly viscous amorphous states at a low relative humidity and temperature. The slow diffusion of molecules in viscous particles impacts the uptake and loss of volatile and semivolatile species and the rate of heterogeneous chemistry. Recent work has demonstrated that in particles containing organic molecules and salts, the formation of two-phase gel states is possible, leading to observations of rigid particles that resist coalescence. The way that molecules diffuse and transport in gel systems is not well-characterized. In this work, we use an electrodynamic balance to levitate sample particles containing a range of organic compounds in mixtures with calcium chloride and measure the rate of water diffusion. Particles of the pure organics have been shown to form viscous amorphous states, while in mixtures with divalent salts, coalescence measurements have revealed the apparent solidification of particles, consistent with the formation of a gel state facilitated by ion-molecule interactions. We report in several cases that water transport can actually be increased in the rigid gel state relative to the pure compound that forms a viscous state under similar conditions. These measurements reveal the limitations of using viscosity as a metric for predicting molecular diffusion and that the gel structure that forms is a much stronger controlling factor in the rate of diffusion. This underscores the need for diffusion measurements as well as a deeper understanding of noncovalent molecular assembly that leads to supramolecular structures in aerosol particles.

More Details

Studies of Laser-Driven Flyer Acceleration Using Optical Fiber Coupling [Book Chapter]

Shock Compression of Condensed Matter–1991

Trott, Wayne M.

An optically recording velocity interferometer system has been used to measure acceleration histories and maximum velocities for laser-driven aluminum foil targets launched from the output face of optical fibers. Peak flyer velocities have been determined as a function of various parameters, including driving laser fluence, laser pulse duration and target thickness. The results at high fluences are consistent with a nearly constant efficiency of coupling optical energy into flyer kinetic energy and a small ablated mass fraction; however, the coupling efficiency falls off rapidly at fluences < 15 J-cm-2. Measurement of the time delay between laser pulse arrival at the target and the onset of flyer motion have also been performed. Significant delays are observed at low fluences, arising from the increased time required for plasma formation at the fiber/foil interface under these conditions.

More Details

Multifidelity deep operator networks for data-driven and physics-informed problems

Journal of Computational Physics

Howard, Amanda A.; Perego, Mauro; Karniadakis, George E.; Stinis, Panos

Operator learning for complex nonlinear systems is increasingly common in modeling multi-physics and multi-scale systems. However, training such high-dimensional operators requires a large amount of expensive, high-fidelity data, either from experiments or simulations. In this work, we present a composite Deep Operator Network (DeepONet) for learning using two datasets with different levels of fidelity to accurately learn complex operators when sufficient high-fidelity data is not available. Additionally, we demonstrate that the presence of low-fidelity data can improve the predictions of physics-informed learning with DeepONets. We demonstrate the new multi-fidelity training in diverse examples, including modeling of the ice-sheet dynamics of the Humboldt glacier, Greenland, using two different fidelity models and also using the same physical model at two different resolutions.

More Details

pvOps: a Python package for empirical analysis of photovoltaic field data

Journal of Open Source Software

Jackson, Nicole D.; Bonney, Kirk L.; Gunda, Thushara; Mendoza, Hector; Hopwood, Michael W.

The purpose of pvOps is to support empirical evaluations of data collected in the field related to the operations and maintenance (O&M) of photovoltaic (PV) power plants. pvOps presently contains modules that address the diversity of field data, including text-based maintenance logs, current-voltage (IV) curves, and timeseries of production information. The package functions leverage machine learning, visualization, and other techniques to enable cleaning, processing, and fusion of these datasets. These capabilities are intended to facilitate easier evaluation of field patterns and extraction of relevant insights to support reliability-related decision-making for PV sites. The open-source code, examples, and instructions for installing the package through PyPI can be accessed through the GitHub repository.

More Details

Electron-field instability: Excitation of electron plasma waves by an electric field

Physics of Plasmas

Beving, Lucas P.; Hopkins, Matthew M.; Baalrud, Scott D.

Electric fields are commonplace in plasmas and affect transport by driving currents and, in some cases, instabilities. The necessary condition for instability in collisionless plasmas is commonly understood to be described by the Penrose criterion, which quantifies a sufficient relative drift between different populations of particles that must be present for wave amplification via inverse Landau damping. For example, electric fields generate drifts between electrons and ions that can excite the ion-acoustic instability. Here, we use particle-in-cell simulations and linear stability analysis to show that the electric field can drive a fundamentally different type of kinetic instability, named the electron-field instability. This instability excites electron plasma waves with wavelengths ≳30λDe, has a growth rate that is proportional to the electric field strength, and does not require a relative drift between electrons and ions. The Penrose criterion does not apply when accounting for the electric field. Furthermore, the large value of the observed frequency, near the electron plasma frequency, further distinguishes it from the standard ion-acoustic instability, which oscillates near the ion plasma frequency. The ubiquity of macroscopic electric fields in quasineutral plasmas suggests that this instability is possible in a host of systems, including low-temperature and space plasmas. In fact, damping from neutral collisions in such systems is often not enough to completely damp the instability, adding to the robustness of the instability across plasma conditions.

More Details

Completion of Critical Experiments with Molybdenum Sleeves at Sandia

Harms, Gary A.; Foulk, James W.; Leclaire, Nicolas; Bez, Jeremy

Sandia National Laboratories (SNL) and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) have collaborated on the design and execution of a set of critical experiments that explore the effects of molybdenum in water moderated fuel-rod arrays. The molybdenum is included as sleeves (tubes) on some of the fuel rods in the arrays. The fuel used in the experiments is known at Sandia as the Seven Percent Critical Experiment (7uPCX) fuel. This fuel has been used is several published benchmark evaluations in including LEU-COMP-THERM-78 and LEU-COMP THERM-080.

More Details

Trade-offs in the latent representation of microstructure evolution

Acta Materialia

Dingreville, Remi; Desai, Saaketh D.; Shrivastava, Ankit; Najm, Habib N.; D'Elia, Marta

Characterizing and quantifying microstructure evolution is critical to forming quantitative relationships between material processing conditions, resulting microstructure, and observed properties. Machine-learning methods are increasingly accelerating the development of these relationships by treating microstructure evolution as a pattern recognition problem, discovering relationships explicitly or implicitly. These methods often rely on identifying low-dimensional microstructural fingerprints as latent variables. However, using inappropriate latent variables can lead to challenges in learning meaningful relationships. In this work, we survey and discuss the ability of various linear and nonlinear dimensionality reduction methods including principal component analysis, autoencoders, and diffusion maps to quantify and characterize the learned latent space microstructural representations and their time evolution. We characterize latent spaces by their ability to represent high-dimensional microstructural data in terms of compression achieved as a function of the number of latent dimensions required to represent the data accurately, their accuracy based on their reconstruction performance, and the smoothness of the microstructural trajectories in latent dimension. We quantify these metrics for common microstructure evolution problems in material science including spinodal decomposition of a binary metallic alloy, thin film deposition of a binary metallic alloy, dendritic growth, and grain growth in a polycrystal. This study provides considerations and guidelines for choosing dimensionality reduction methods when considering materials problems that involve high dimensional data and a variety of features over a range of lengths and time scales.

More Details

Modeling–Experiment–Theory Analysis of Reactions Initiated from Cl + Methyl Formate

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Cho, Jaeyoung; Rosch, Daniel; Tao, Yujie; Osborn, David L.; Klippenstein, Stephen J.; Sheps, Leonid; Sivaramakrishnan, Raghu

Methyl formate (MF; CH3OCHO) is the smallest representative of esters, which are common components of biodiesel. The present study characterizes the thermal dissociation kinetics of the radicals formed by H atom abstraction from MF—CH3OCO and CH2OCHO—through a combination of modeling, experiment, and theory. For the experimental effort, excimer laser photolysis of Cl2 was used as a source of Cl atoms to initiate reactions with MF in the gas phase. Time-resolved species profiles of MF, Cl2, HCl, CO2, CH3, CH3Cl, CH2O, and CH2ClOCHO were measured and quantified using photoionization mass spectrometry at temperatures of 400–750 K and 10 Torr. The experimental data were simulated using a kinetic model, which was informed by ab initio-based theoretical kinetics calculations and included chlorine chemistry and secondary reactions of radical decomposition products. Here, we calculated the rate coefficients for the H-abstraction reactions Cl + MF → HCl + CH3OCO (R1a) and Cl + MF → HCl + CH2OCHO (R1b): k1a,theory = 6.71 × 10–15·T1.14·exp(—606/T) cm3/molecule·s; k1b,theory = 4.67 × 10–18·T2.21·exp(—245/T) cm3/molecule·s over T = 200–2000 K. Electronic structure calculations indicate that the barriers to CH3OCO and CH2OCHO dissociation are 13.7 and 31.6 kcal/mol and lead to CH3 + CO2 (R3) and CH2O + HCO (R5), respectively. The master equation-based theoretical rate coefficients are k3,theory (P = ∞) = 2.94 × 109·T1.21·exp(—6209/T) s–1 and k5,theory (P = ∞) = 8.45 × 108·T1.39·exp(—15132/T) s–1 over T = 300–1500 K. The calculated branching fractions into R1a and R1b and the rate coefficient for R5 were validated by modeling of the experimental species time profiles and found to be in excellent agreement with theory. Additionally, we found that the bimolecular reactions CH2OCHO + Cl, CH2OCHO + Cl2, and CH3 + Cl2 were critical to accurately model the experimental data and constrain the kinetics of MF-radicals. Inclusion of the kinetic parameters determined in this study showed a significant impact on combustion simulations of larger methyl esters, which are considered as biodiesel surrogates.

More Details
Results 1501–1600 of 99,299
Results 1501–1600 of 99,299