Publications

7 Results

Search results

Jump to search filters

Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins

Scientific Reports

LaBauve, Annette E.; Saada, Edwin A.; Jones, Iris K.A.; Mosesso, Richard A.; Noureddine, Achraf; Techel, Jessica L.; Gomez, Andrew G.; Collette, Nicole; Sherman, Michael B.; Serda, Rita E.; Butler, Kimberly B.; Brinker, C.J.; Schoeniger, Joseph S.; Sasaki, Darryl; Negrete, Oscar N.

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann–Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.

More Details

Self-assembly/disassembly of giant double-hydrophilic polymersomes at biologically-relevant pH

Chemical Communications

Shin, Sun H.; Mcaninch, Patrick T.; Henderson, Ian M.; Gomez, Andrew G.; Greene, Adrienne C.; Carnes, Eric C.; Paxton, Walter F.

Self-assembled giant polymer vesicles prepared from double-hydrophilic diblock copolymers, poly(ethylene oxide)-b-poly(acrylic acid) (PEO-PAA) show significant degradation in response to pH changes. Because of the switching behavior of the diblock copolymers at biologically-relevant pH environments (2 to 9), these polymer vesicles have potential biomedical applications as smart delivery vehicles.

More Details

Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

Nanoscale

Paxton, Walter F.; Bachand, George B.; Gomez, Andrew G.; Henderson, Ian M.; Bouxsein, Nathan F.

In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.

More Details
7 Results
7 Results