Publications

3 Results

Search results

Jump to search filters

Low Threshold, Long Wavelength Interband Cascade Lasers With High Voltage Efficiencies

IEEE Journal of Quantum Electronics

Massengale, Jeremy A.; Shen, Yixuan; Yang, Rui Q.; Hawkins, Samuel D.; Muhowski, Aaron J.

We report on the substantial advancement of long wavelength InAs-based interband cascade lasers (ICLs) utilizing advanced waveguides formed from hybrid cladding layers and targeting the 10-12μm wavelength region. Modifications in the hole injector have improved carrier transport in these ICLs, resulting in significantly reduced threshold voltages (Vth) as low as 3.62 V at 80 K. Consequently, much higher voltage efficiencies were observed, peaking at about 73% at 10.3μm and allowing for large output powers of more than 100 mW/facet. Also, low threshold current densities (Jth) of 8.8 A/cm2 in cw mode and 7.6 A/cm2 in pulsed mode near 10μm were observed; a result of adjustments in the GaInSb hole well composition intended to reduce the overall strain accumulation in the ICL. Furthermore, an ICL from the second wafer operating at a longer wavelength achieved a peak voltage efficiency of 57% at 11.7μm, with a peak output power of more than 27 mW/facet. This ICL went on to lase beyond 12μm in both cw and pulsed modes, representing a new milestone in long wavelength coverage for ICLs with the standard W-QW active region.

More Details

Pushing the performance limits of long wavelength interband cascade lasers using innovative quantum well active regions

Applied Physics Letters

Shen, Yixuan; Massengale, J.A.; Yang, Rui Q.; Hawkins, Samuel D.; Muhowski, Aaron J.

We report significantly enhanced device performance in long wavelength interband cascade lasers (ICLs) by employing a recently proposed innovative quantum well (QW) active region containing strained InAsP layers. These ICLs were able to operate at wavelengths near 14.4 μm, the longest ever demonstrated for III-V interband lasers, implying great potential of ICLs to cover an even wider wavelength range. Also, by applying the aforesaid QW active region configuration on ICLs at relatively short wavelengths, ICLs were demonstrated at a low threshold current density (e.g., 13 A/cm2 at 80 K) and at temperatures up to 212 K near 12.4 μm, more than 50 K higher than the previously reported ICLs with the standard W-shape QW active region at similar wavelengths. This suggests that the QW active region with InAsP layers can be used to improve device performance at the shorter wavelengths.

More Details

All-epitaxial resonant cavity enhanced long-wave infrared detectors for focal plane arrays

Applied Physics Letters

Petluru, P.; Muhowski, Aaron J.; Kamboj, A.; Mansfield, N.C.; Bergthold, M.; Shaner, Eric A.; Klem, John F.; Wasserman, D.

We demonstrate a monolithic all-epitaxial resonant-cavity architecture for long-wave infrared photodetectors with substrate-side illumination. An nBn detector with an ultra-thin (t ≈ 350 nm) absorber layer is integrated into a leaky resonant cavity, formed using semi-transparent highly doped (n + +) epitaxial layers, and aligned to the anti-node of the cavity's standing wave. The devices are characterized electrically and optically and demonstrate an external quantum efficiency of ∼25% at T = 180 K in an architecture compatible with focal plane array configurations.

More Details
3 Results
3 Results