This article characterises the effects of cathode photoemission leading to electrical discharges in an argon gas. We perform breakdown experiments under pulsed laser illumination of a flat cathode and observe Townsend to glow discharge transitions. The breakdown process is recorded by high-speed imaging, and time-dependent voltage and current across the electrode gap are measured for different reduced electric fields and laser intensities. We employ a 0D transient discharge model to interpret the experimental measurements. The fitted values of transferred photoelectron charge are compared with calculations from a quantum model of photoemission. The breakdown voltage is found to be lower with photoemission than without. When the applied voltage is insufficient for ion-induced secondary electron emission to sustain the plasma, laser driven photoemission can still create a breakdown where a sheath (i.e. a region near the electrode surfaces consisting of positive ions and neutrals) is formed. This photoemission induced plasma persists and decays on a much longer time scale ( ∼ 10 s μ s) than the laser pulse length ( 30 ps). The effects of different applied voltages and laser energies on the breakdown voltage and current waveforms are investigated. The discharge model can accurately predict the measured breakdown voltage curves, despite the existence of discrepancy in quantitatively describing the transient discharge current and voltage waveforms.
Laser-induced photoemission of electrons offers opportunities to trigger and control plasmas and discharges [1]. However, the underlying mechanisms are not sufficiently characterized to be fully utilized [2]. We present an investigation to characterize the effects of photoemission on plasma breakdown for different reduced electric fields, laser intensities, and photon energies. We perform Townsend breakdown experiments assisted by high-speed imaging and employ a quantum model of photoemission along with a 0D discharge model [3], [4] to interpret the experimental measurements.
Laser-induced photoemission of electrons offers opportunities to trigger and control plasmas and discharges. However, the underlying mechanisms are not sufficiently characterized to be fully utilized. Photoemission is highly nonlinear, achieved through multiphoton absorption, above threshold ionization, photo-assisted tunneling, etc., where the dominant process depends on the work function of the material, photon energy and associated fields, surface heating, background fields, etc. To characterize the effects of photoemission on breakdown, breakdown experiments were performed and interpreted using a 0D plasma discharge circuit model and quantum model of photoemission.
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated output voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.