Publications

Results 52801–53000 of 99,299

Search results

Jump to search filters

The Effect of Job Performance Aids on Quality Assurance

Fosshage, Erik

Job performance aids (JPAs) have been studied for many decades in a variety of disciplines and for many different types of tasks, yet this is the first known research experiment using JPAs in a quality assurance (QA) context. The objective of this thesis was to assess whether a JPA has an effect on the performance of a QA observer performing the concurrent dual verification technique for a basic assembly task. The JPA used in this study was a simple checklist, and the design borrows heavily from prior research on task analysis and other human factors principles. The assembly task and QA construct of concurrent dual verification are consistent with those of a high consequence manufacturing environment. Results showed that the JPA had only a limited effect on QA performance in the context of this experiment. However, there were three important and unexpected findings that may draw interest from a variety of practitioners. First, a novel testing methodology sensitive enough to measure the effects of a JPA on performance was created. Second, the discovery that there are different probabilities of detection for different types of error in a QA context may be the most far-reaching results. Third, these results highlight the limitations of concurrent dual verification as a control against defects. It is hoped that both the methodology and results of this study are an effective baseline from which to launch future research activities.

More Details

Shadow Probability of Detection and False Alarm for Median-Filtered SAR Imagery

Raynal, Ann M.; Doerry, Armin W.

Median filtering reduces speckle in synthetic aperture radar (SAR) imagery while preserving edges, at the expense of coarsening the resolution, by replacing the center pixel of a sliding window by the median value. For shadow detection, this approach helps distinguish shadows from clutter more easily, while preserving shadow shape delineations. However, the nonlinear operation alters the shadow and clutter distributions and statistics, which must be taken into consideration when computing probability of detection and false alarm metrics. Depending on system parameters, median filtering can improve probability of detection and false alarm by orders of magnitude. Herein, we examine shadow probability of detection and false alarm in a homogeneous, ideal clutter background after median filter post-processing. Some comments on multi-look processing effects with and without median filtering are also made.

More Details

Developing Information-Space Confidence Building Measures (CBMs) between India and Pakistan

Yamin, Tughral

The Internet has changed the world in ways hitherto unknown. The international financial system, air, land and maritime transport systems are all digitally linked. Similarly most militaries are fully or partially networked. This has not only sped up the decision making processes at all levels, it has also rendered these systems vulnerable to cyber-attacks. Cyber-warfare is now recognized as the most potent form of non-kinetic war fighting. In order to prevent large scale network-attacks, cyber-powers are simultaneously spending a lot of time, money and effort to erect redundant cyber-defenses and enhancing their offensive cyber capabilities. Difficulties in creating a stable environment in information-space stem from differing national perceptions regarding the freedom of the Internet, application of international law and problems associated with attribution. This paper discusses a range of Confidence Building Measures that can be created between India and Pakistan in information-space to control malicious cyber behavior and avert an inadvertent war.

More Details

High efficiency turbine blade coatings

Gallis, Michael A.

The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

More Details

Impact of ASTM Standard E722 update on radiation damage metrics

Depriest, Kendall R.

The impact of recent changes to the ASTM Standard E722 is investigated. The methodological changes in the production of the displacement kerma factors for silicon has significant impact for some energy regions of the 1-MeV(Si) equivalent fluence response function. When evaluating the integral over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in an increase in the total 1-MeV(Si) equivalent fluence of 2 7%. Response functions have been produced and are available for users of both the NuGET and MCNP codes.

More Details

Calendar Year 2013 Annual Groundwater Monitoring Report

Skelly, Michael; Copland, John R.; Griffith, Stacy; Jackson, Timmie O.; Li, Jun; Lum, Clinton C.L.; Mitchell, Michael M.

Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Sandia conducts two types of groundwater surveillance monitoring at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) as site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report documents the results of the groundwater monitoring activities at SNL/NM for Calendar Year (CY) 2013. This report has been prepared to meet the environmental reporting requirements for the CY 2013 Annual Site Environmental Report, providing an annual update of groundwater data to regulators, stakeholders, and outside agencies. In addition, it serves as a valuable tool to inform the public about the groundwater quality at SNL/NM. This report includes both water quality sampling results and water level measurements.

More Details

Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

Journal of Engineering for Gas Turbines and Power

Mueller, Charles J.

A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate, and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.

More Details

Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

Structural Health Monitoring

Leblanc, Bruce P.

The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.

More Details

Efficient photoluminescence via metal-ligand alteration in a new MOFs family

Chemistry of Materials

Gallis, Dorina F.S.; Rohwer, Lauren E.S.; Rodriguez, Mark A.; Nenoff, Tina M.

Here, we introduce a family of metal-organic frameworks (MOFs) whose photoluminescence is tunable through metal and organic ligand substitutions. The compounds in this family are composed of In, In-Eu, or Eu metal centers and organic ligand chromophores. Systematic variations in the metal and organic components resulted in materials with emissions ranging from white to red. The single-component white-light emitter material is made of In, 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (TTB) and oxalic acid. Red-emitting MOFs composed of Eu metal centers and TTB ligands have a room temperature quantum yield (QY) of 50% and a 48% QY at 150 °C due to reversible thermal quenching. This is the highest quantum yield measured at elevated temperatures reported for this class of materials. The materials are thermally stable, retaining their high QY after heating at 150 °C for several hours. These thermal quenching/stability studies show the potential use of MOFs in devices that operate at elevated temperatures, such as white-light-emitting diodes for solid-state lighting. This is a unique study that correlates the QY, thermal quenching, and thermal stability of MOFs with structural properties. © 2014 American Chemical Society.

More Details

A Pitzer model for the Na-Al(OH)4-Cl-OH system and solubility of boehmite (AlOOH) to high ionic strength and to 250°C

Chemical Geology

Xiong, Yongliang

In this study, a Pitzer model for the Na-Cl-OH-Al(OH)4 system, and solubility of boehmite (AlOOH) to high ionic strengths, and to high temperatures up to 250°C, has been developed by evaluating equilibrium quotients concerning boehmite in NaCl solutions to 5.0mol·kg-1, and boehmite solubility data in NaOH solutions to ~13mol·kg-1. This model is validated by comparing model-predicted solubilities with solubility data of boehmite in NaOH solutions that are independent from the model development. This model is of value to many fields, including accurate modeling geochemical behavior of aluminum in hydrothermal solutions with high ionic strengths at high temperatures up to 250°C, extraction of aluminum via the Bayer process from various ores, stability of borosilicate glass, aluminum silicate materials as waste forms for long-lived radio nuclides, and bentonite as engineered barrier, in geological repositories.Based on the model developed in this work, solubility of boehmite can be potentially used as a pHm (hydrogen ion concentration on molal scale) sensor/buffer in hydrothermal experiments under neutral to alkaline conditions in NaCl solutions in the absence of silica. This pHm sensor/buffer would enable experimentalists to conduct hydrothermal experiments in a wide range ionic strength under well-controlled pHm conditions. © 2014 Elsevier B.V.

More Details

Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks

Allendorf, Mark; Greathouse, Jeffery A.; Simmons, Blake

Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and "flexible" force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing $\$$2.75 M in funding from outside agencies to continue the research.

More Details

Is submodularity testable?

Algorithmica

Seshadhri, C.; Vondrák, Jan

We initiate the study of property testing of submodularity on the boolean hypercube. Submodular functions come up in a variety of applications in combinatorial optimization. For a vast range of algorithms, the existence of an oracle to a submodular function is assumed. But how does one check if this oracle indeed represents a submodular function? Consider a function f:{0,1} n . The distance to submodularity is the minimum fraction of values of f that need to be modified to make f submodular. If this distance is more than I€>0, then we say that f is I€-far from being submodular. The aim is to have an efficient procedure that, given input f that is I€-far from being submodular, certifies that f is not submodular. We analyze a natural tester for this problem, and prove that it runs in subexponential time. This gives the first non-trivial tester for submodularity. On the other hand, we prove an interesting lower bound (that is, unfortunately, quite far from the upper bound) suggesting that this tester cannot be efficient in terms of I€. This involves non-trivial examples of functions which are far from submodular and yet do not exhibit too many local violations. We also provide some constructions indicating the difficulty in designing a tester for submodularity. We construct a partial function defined on exponentially many points that cannot be extended to a submodular function, but any strict subset of these values can be extended to a submodular function. © 2012 Springer Science+Business Media New York (outside the USA).

More Details

Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF

Journal of Crystal Growth

Cederberg, Jeffrey G.; Albrecht, A.R.; Ghasemkhani, M.; Melgaard, S.D.; Sheik-Bahae, M.

Optically-pumped vertical external cavity surface emitting lasers (VECSELs) have unique characteristics that make them attractive for use in intracavity optical cooling of rare earth doped crystals. We present the development of high power VECSELs at 1020 nm for cooling ytterbium-doped yttrium lithium fluoride (Yb:YLF). The VECSEL structures use AlAs/GaAs distributed Bragg reflectors and InGaAs/GaAsP resonant periodic gain epitaxially grown by metal-organic vapor phase epitaxy. To achieve the necessary output power, we investigated thinning the substrate to improve the thermal characteristics. We demonstrated a VECSEL structure that was grown inverted, bonded to the heat sink, and the substrate removed by chemical etching. The inverted structure allows us to demonstrate 15 W output with 27% slope efficiency. Wavelength tuning of 30 nm around 1020 nm was achieved by inserting a birefringent quartz window into the cavity. The window also narrows the VECSEL emission, going from a FWHM of 5 nm to below 0.5 nm at a pump power of 40 W. © 2013 Published by Elsevier B.V.

More Details

Novel metal-organic framework linkers for light harvesting applications

Chemical Science

Foster, Michael E.; Azoulay, Jason D.; Wong, Bryan M.; Allendorf, Mark

Metal-organic frameworks (MOFs) are composed of organic linkers and coordinating metals that self-assemble to form a crystalline material with tunable nanoporosity. Their synthetic modularity and inherent long-range order create opportunities for use as new functional electronic materials. Using quantum mechanical computational methodologies we propose novel conjugated organic linkers that are capable of forming the same one-dimensional infinite metal-oxide secondary building units (SBUs) as the well-known IRMOF-74. This structural arrangement allows for the formation of a continuous π-π stacking network that should enable charge transport in fashion analogous to organic semiconductors. The structural and electronic properties (fundamental and optical gaps) of the isolated proposed linkers were modeled using a non-empirically tuned long-range corrected functional that leads to significantly improved results compared with experimental benchmarks. In addition, periodic hybrid density functional calculations were employed to model the extended MOF systems. Our results demonstrate how the electronic properties of MOFs can be readily modified to have favorable orbital alignments with known electron acceptors that should facilitate charge transfer. The predicted properties are in good agreement with experiment (i.e. UV-Vis absorption spectra), demonstrating the power of this computational approach for MOF design. © 2014 the Partner Organisations.

More Details

Flexible and Scalable Data Fusion using Proactive, Schemaless Information Services

Widener, Patrick

Exascale data environments are fast approaching, driven by diverse structured and unstructured data such as system and application telemetry streams, open-source information capture, and on-demand simulation output. Storage costs having plummeted, the question is now one of converting vast stores of data to actionable information. Complicating this problem are the low degrees of awareness across domain boundaries about what potentially useful data may exist, and write-once-read- never issues (data generation/collection rates outpacing data analysis and integration rates). Increasingly, technologists and researchers need to correlate previously unrelated data sources and artifacts to produce fused data views for domain-specific purposes. New tools and approaches for creating such views from vast amounts of data are vitally important to maintaining research and operational momentum. We propose to research and develop tools and services to assist in the creation, refinement, discovery and reuse of fused data views over large, diverse collections of heterogeneously structured data. We innovate in the following ways. First, we enable and encourage end-users to introduce customized index methods selected for local benefit rather than for global interaction (flexible multi-indexing). We envision rich combinations of such views on application data: views that span backing stores with different semantics, that introduce analytic methods of indexing, and that define multiple views on individual data items. We specifically decline to build a big fused database of everything providing a centralized index over all data, or to export a rigid schema to all comers as in federated query approaches. Second, we proactively advertise these application-specific views so that they may be programmatically reused and extended (data proactivity). Through this mechanism, both changes in state (new data in existing view collected) and changes in structure (new or derived view exists) are made known. Lastly, we embrace found data heterogeneity by coupling multi-indexing to backing stores with appropriate semantics (as opposed to a single store or schema).

More Details

Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

Combustion and Flame

Kearney, Sean P.

A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1kHz. The technique is evaluated for temperature/oxygen measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of ϕ=0.20-1.20. Thermometry is demonstrated in hydrocarbon/air products for ϕ=0.75-3.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1-2% precision in temperature and O2/N2 ratio are identified. The results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H2/air combustion to fuel-rich sooting hydrocarbon flames.

More Details

A Comprehensive Evaluation of the Performance and Materials Chemistry of a Sililcone-Based Replicating Compound

Kalan, Michael

The objective of this project was to characterize the performance and chemistry of a siliconebased replicating compound. Some silicone replicating compounds are useful for critical inspection of surface features. Common applications are for examining micro-cracks, surface pitting, scratching, and other surface defects. Materials characterization techniques were used: FTIR, XPS, ToF-SIMS, AFM, and Confocal Microscopy to evaluate the replicating compound. These techniques allowed for the characterization and verification of the resolution capabilities and surface contamination that may be a result of using the compound. FTIR showed the compound is entirely made from silicone constituents. The AFM and Confocal Microscopy results showed the compound does accurately replicate the surface features to the claimed resolution. XPS and ToF-SIMS showed there is a silicone contaminant layer left behind when a cured replica is peeled off a surface. Attempts to clean off the contamination could not completely remove all silicone residues.

More Details

Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

Musgrove, Cameron

For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement to the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.

More Details

Performance assessment of the PNM Prosperity electricity storage project

Ellison, James; Roberson, Dakota; Schoenwald, David A.

The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

More Details

Effects of increasing tip velocity on wind turbine rotor design

Resor, Brian R.; Maniaci, David C.; Berg, Jonathan C.; Richards, Phillip W.

A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

More Details
Results 52801–53000 of 99,299
Results 52801–53000 of 99,299