Three balance of systems (BOS) connector designs common to industry were investigated as a means of assessing reliability from the perspective of arc fault risk. These connectors were aged in field and laboratory environments and performance data captured for future development of a reliability model. Comparison of connector resistance measured during damp heat, mixed flowing gas and field exposure in a light industrial environment indicated disparities in performance across the three designs. Performance was, in part, linked to materials of construction. A procedure was developed to evaluate new and aged connectors for arc fault risk and tested for one of the designs. Those connectors exposed to mixed flowing gas corrosion exhibited considerable Joule heating that may enhance arcing behavior, suggesting temperature monitoring as a potential method for arc fault prognostics. These findings, together with further characterization of connector aging, can provide operators of photovoltaic installations the information necessary to develop a data-driven approach to BOS connector maintenance as well as opportunities for arc fault prognostics.
Benjamin B. Yang shares his views on photovoltaics (PV) failure analysis and reliability. He provides information about common failure mechanisms in the PV industry and the significant overlap with FA techniques and meth?ods in microelectronics. The rapid growth and adoption of this technology means that microelectronics failure analysis and reliabil-ity experts may be called upon to address current and future challenges. These failures can be analyzed and solved by the implementation of FA techniques and meth?ods in microelectronics.
To fill a major knowledge gap, Sandia National Laboratories (SNL) and the Electric Power Research Institute (EPRI) are jointly engaged in a multi-year research effort, supported by the Department of Energy’s SunShot Program, to examine real-world photovoltaic (PV) plant reliability and performance. Findings and analyses, derived from field data documented in the PV Reliability Operations Maintenance (PVROM) database tool as well as from convened workshops and working group discussions, are intended to inform industry best practices around the optimal operations and maintenance (O&M) of solar PV assets. To improve upon and evolve existing solar PV O&M approaches, this report: 1. Provides perspective on the concept of PV “system” reliability and how it can inform plant design, operations, and maintenance decisions that produce better long-term outcomes; 2. Describes the PVROM data collection tool, its technical capabilities, and results generated from database content in 2014; 3. Presents ongoing research efforts that are meant to drive the solar industry toward PV O&M best practice protocols and standards; and 4. Reflects on future areas of inquiry that can help better forecast plant health (e.g., system component availability, component wear out, etc.) and associated lifecycle costs. Ultimately, this report adds to the knowledge base of improving PV system O&M activities by discussing data collection and analysis techniques that can be used to better understand and enhance the reliability, availability, and performance of a photovoltaic system.