Publications

Results 1–25 of 171

Search results

Jump to search filters

The kinetics of polyurethane structural foam formation: Foaming and polymerization

AIChE Journal

Rao, Rekha R.; Mondy, L.A.; Long, Kevin N.; Celina, Mathias C.; Roberts, Christine C.; Soehnel, Melissa M.; Wyatt, Nicholas B.; Brunini, Victor B.

Kinetic models have been developed to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI-10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, although it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transition temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. The kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent articles. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2945–2957, 2017.

More Details

Mechanical Behavior of MinK and FiberFrax Board Insulation Materials Under Battery Packaging Relevant Conditions

Long, Kevin N.; Stavig, Mark E.; Roberts, Christine C.; Mondy, L.A.

We present a new collection of data on the load-stress relaxation-unload behavior of MinK and FiberFrax Board (FF) insulation materials used as pellets in-line with thermal battery electrochemical stacks. Both materials were subjected to standard thermal preparations, and then tested at room temperature. Intermediate term stress relaxation tests are presented (order 104 minutes of relaxation) showing that FF relaxation is not significantly stress or deformation dependent, but MinK is moderately so. Moreover, stress-strain curves associated with specimen unloading, reloading, and unloading again are presented for both materials. FF and MinK are substantially different here. Acute material variability is observed though test conditions and material preparations are standardized. A modeling approach is presented to empirically estimate the amount of stress relaxation at room temperature, and from this state, represent the unloading stress-strain behavior of both materials. This effort provides a complete framework for representing (in an engineering sense) both materials in thermal battery performance simulations.

More Details

Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

Rao, Rekha R.; Roberts, Christine C.; Mondy, L.A.; Soehnel, Melissa M.; Johnson, Kyle J.; Lorenzo, Henry T.

Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

More Details

Final Report for LDRD: The Effect of Proppant Placement on Closure of Fractured Shale Gas Wells

Ingraham, Mathew D.; Bolintineanu, Dan S.; Rao, Rekha R.; Mondy, L.A.; Lechman, Jeremy B.; Quintana, Enrico C.; Bauer, Stephen J.

The recent boom in the oil and natural gas industry of hydraulic fracture of source rocks has caused a new era in oil and gas production worldwide. However, there are many parts of this process that are poorly understood and thus hard to control. One of the few things that can be controlled is the process of injection to create the fractures in the subsurface and the subsequent injection of proppants to maintain the permeability of the fractured formation, allowing hydrocarbons to be extracted. The goal of this work was to better understand the injection process and resulting proppant distribution in the fracture through a combination of lab-scale experiments and computational models.

More Details

Bubble-Size Evolution during Polyurethane Foam Expansion

Mondy, L.A.; Roberts, Christine C.; Soehnel, Grant H.; Brady, Casper; Shelden, Bion; Soehnel, Melissa M.; Garcia, Robert M.

We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane (PMDI) foam used to encapsulate electronic components or to produce lightweight structural parts. The polyurethane of interest is a chemically blown foam, where carbon dioxide is produced via the reaction of water, a blowing agent, and isocyanate. Here, we take a careful look at the evolution of the bubble sizes during blowing. This information will help the development of subgrid models to predict bubble formation, growth, coalescence and collapse, drainage, and, hence, eventually the development of engineering models to predict foam expansion into a mold. Close-up views of bubbles at a transparent wall of a narrow, temperature-controlled channel are recorded during the foaming reaction and analyzed with image processing. Because these bubbles are pressed against the wall, the bubble sizes in the last frames after the expansion has stopped are compared to scanning electron microscope (SEM) images of the interior of some of the cured samples to determine if the presence of the wall significantly changes the bubble sizes. In addition, diffusing wave spectroscopy (DWS) is used to determine the average bubble sizes across the width of a similar channel as the bubbles change with time. DWS also gives information about microstructural changes as bubbles rearrange upon bubble collapse or coalescence. In this paper we conclude qualitatively that the bubble size distribution is heavily dependent on the formulation of foam being tested, temperature, the height in the foam bar, the proximity to a wall, and the degree of over-packing.

More Details

A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

Rao, Rekha R.; Mondy, L.A.; Noble, David R.; Brunini, Victor B.; Roberts, Christine C.; Long, Kevin N.; Soehnel, Melissa M.; Celina, Mathias C.; Wyatt, Nicholas B.; Thompson, Kyle R.

We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.

More Details

Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

International Polymer Processing

Mondy, L.A.; Bieg, Lothar F.; Spangler, Scott W.; Stavig, Mark E.; Schroeder, John L.; Rao, Rekha R.; DiAntonio, Christopher D.

Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.

More Details
Results 1–25 of 171
Results 1–25 of 171