Publications

18 Results
Skip to search filters

Heat Transfer Phenomena in Concentrating Solar Power Systems

Armijo, Kenneth M.; Shinde, Subhash L.

Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

More Details

Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

Yellowhair, Julius; Kwon, Hoyeong K.; Alu, Andrea A.; Jarecki, Robert L.; Shinde, Subhash L.

Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed nanostructured Tungsten surfaces. We predict that this will improve the receiver thermal efficiencies by at least 10% over current solar receivers.

More Details

Three wafer stacking for 3D integration

Ford, Christine L.; Greth, Karl D.; Hetherington, Dale L.; Sanchez, Carlos A.; Shinde, Subhash L.; Timon, Robert P.

Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

More Details

Front end of line integration of high density, electrically isolated, metallized through silicon vias

Proceedings - Electronic Components and Technology Conference

Bauer, Todd M.; Shinde, Subhash L.; Massad, Jordan M.; Hetherington, Dale L.

We have developed a complete process module for fabricating front end of line (FEOL) through silicon vias (TSVs). In this paper we describe the integration, which relies on using thermally deposited silicon as a sacrificial material to fill the TSV during FEOL processing, followed by its removal and replacement with tungsten after FEOL processing is complete. The uniqueness of this approach follows mainly from forming the TSVs early in the FEOL while still ultimately using metal as the via fill material. TSVs formed early in the FEOL can be formed at comparatively small diameter, high aspect ratio, and high spatial density. We have demonstrated FEOL-integrated TSVs that are 2 μm in diameter, over 45 μm deep, and on 20 μm pitch for a possible interconnect density of 250,000/cm2. Moreover, thermal oxidation of silicon can be used to form the dielectric isolation. Thermal oxidation is conformal and robust in the as-formed state. Finally, TSVs formed in the FEOL alleviate device design constraints common to vias-last integration. © 2009 IEEE.

More Details
18 Results
18 Results