Publications

Results 1–25 of 156

Search results

Jump to search filters

X-ray powder diffraction study of La2LiTaO6

Powder Diffraction

Rodriguez, Mark A.; Griego, James J.M.; Brown-Shaklee, Harlan J.; Blea-Kirby, Mia A.; Ihlefeld, Jon F.; Spoerke, Erik D.

The structure of La2LiTaO6 has been derived from the powder X-ray powder diffraction (XRD) data. La2LiTaO6 is monoclinic with unit-cell parameters a = 5.621(1) Å, b = 5.776(1) Å, c = 7.954(2) Å, β = 90.34(2)°, space group P21/n (14), and Z = 2. The structure of La2LiTaO6 is an ordered perovskite with alternating Li and Ta octahedra. A new set of powder XRD data (d-spacing and intensity listing) has been generated to replace entry 00-039-0897 within the Powder Diffraction File. The newly elucidated structural data for La2LiTaO6 shall facilitate quantitative analysis of this impurity phase which is often observed during synthesis of the fast-ion conductor phase Li5La3Ta2O12.

More Details

In-situ monitoring of vanadium dioxide formation using high-temperature XRD

Powder Diffraction

Rodriguez, Mark A.; Bell, Nelson S.; Griego, James J.M.; Edney, Cynthia; Clem, Paul

The monoclinic-to-tetragonal phase transition (∼70 °C) in vanadium dioxide (VO2) strongly impacts the infrared properties, which enables its use in applications such as smart window devices. Synthesis of VO 2 can be challenging due to the variability of vanadium oxide phases that may be formed. We have employed high-temperature X-ray diffraction (HTXRD) to monitor the reaction process of vanadium oxide precursor powders to form the desired tetragonal VO2 phase. Single-phase tetragonal VO2 was formed within 30 min at 420 °C in flowing N2 gas (∼50 ppm O2). The monoclinic-to-tetragonal phase transformation was observed via HTXRD at ∼70 °C with the typical ∼10 °C hysteresis (i.e. approached from above or below the transition). © International Centre for Diffraction Data 2014.

More Details

Optical anisotropy near the relaxor-ferroelectric phase transition in lanthanum lead zirconate titanate

Journal of Applied Physics

Brown-Shaklee, Harlan J.; Rodriguez, Mark A.; Brennecka, Geoff

We examine the optical activity, birefringence, and transparency of Lanthanum-doped, lead zirconate titanate (PLZT 7/65/35) bulk ceramic wafer sections over visible and near-IR spectra and on heating. Optical transitions are compared to both crystallographic (rhombohedral-cubic) and domain (relaxor-ferroelectric) transitions identified with x-ray diffraction, dielectric, and calorimetry measurements. Optical activity and birefringence are shown to be enhanced for disordered domains near room temperature, to attenuate above the relaxor-ferroelectric transition and to gradually decay above the Curie point regardless of the initial poling state. The results are interpreted in light of the change of crystallographic symmetry due to the local strains induced by ferroelectric architecture. The heterogeneous local strains more strongly influence the optical properties than the macro-scale structure of the polycrystalline PLZT ceramic. This mechanism is significant for understanding optical rotation and birefringence in polycrystalline systems. Finally, the specific rotation (up to 350°/mm) lies among the highest reported for crystalline materials. Along with strong poling contrast and comparatively small dispersion for the unpoled state, these properties are promising for electro-optics applications. © 2013 AIP Publishing LLC.

More Details
Results 1–25 of 156
Results 1–25 of 156