Semiconductor Epsilon-Near-Zero Nano-Optics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2013 Conference on Lasers and Electro-Optics, CLEO 2013
We demonstrate a new type of electrically tunable strong coupling between a planar metamaterial layer and an ultra-thin epsilon-near-zero layer made of a doped semiconductor. This can find novel applications in chip-scale infrared optoelectronic devices. © 2013 The Optical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Biology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optics InfoBase Conference Papers
Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared. © 2010 Optical Society of America.
Optics Express
Abstract not provided.
Abstract not provided.
Abstract not provided.
Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.
IEEE Antennas and Wireless Propagation Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
Cellular autofluorescence, though ubiquitous when imaging cells and tissues, is often assumed to be small in comparison to the signal of interest. Uniform estimates of autofluorescence intensity obtained from separate control specimens are commonly employed to correct for autofluorescence. While these may be sufficient for high signal-to-background applications, improvements in detector and probe technologies and introduction of spectral imaging microscopes have increased the sensitivity of fluorescence imaging methods, exposing the possibility of effectively probing the low signal-to-background regime. With spectral imaging, reliable monitoring of signals near or even below the noise levels of the microscope is possible if autofluorescence and background signals can be accurately compensated for. We demonstrate the importance of accurate autofluorescence determination and utility of spectral imaging and multivariate analysis methods using a case study focusing on fluorescence confocal spectral imaging of host-pathogen interactions. In this application fluorescent proteins are produced when bacteria invade host cells. Unfortunately the analyte signal is spectrally overlapped and typically weaker than the cellular autofluorescence. In addition to discussing the advantages of spectral imaging for following pathogen invasion, we present the spectral properties of mouse macrophage autofluorescence. The imaging and analysis methods developed are widely applicable to cell and tissue imaging. © 2008 Copyright SPIE - The International Society for Optical Engineering.