Publications

Results 1–25 of 32

Search results

Jump to search filters

Deep Borehole Field Test: Characterization Borehole Science Objectives

Kuhlman, Kristopher L.; Brady, Patrick V.; Mackinnon, Robert J.; Gardner, William P.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Hadgu, Teklu; Sevougian, Stephen D.; Birkholzer, Jens; Freifeld, Barry M.; Daley, Tom

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD as a key strategy objective. DOE’s Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel (DOE 2014a) concludes “effective implementation of a strategy for management and disposal of all High-Level Waste and Spent Nuclear Fuel” would include focused research on deep boreholes, especially to retain flexible options for disposal of physically smaller DOEmanaged solid radioactive waste forms. More information regarding the characteristics, quantities, and sizes of these physically smaller waste forms is in the Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste (SNL 2014).

More Details

Helium-mass-spectrometry-permeameter for the measurement of permeability of low permeability rock with application to triaxial deformation conditions

49th US Rock Mechanics Geomechanics Symposium 2015

Bauer, Stephen J.; Lee, Moo Y.; Gardner, William P.

A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. Here we use a Helium - Mass - Spectrometry - Permeameter (HMSP) to conduct a constant pressure, steady state flow test through a sample using helium gas. Under triaxial stress conditions, the HMSP can measure flow and estimate permeability of rocks and geomaterials down to the nanodarcy scale (10-21 m2). In this study, measurements of flow through eight shale samples under hydrostatic conditions were in the range of 10-7 to 10-9 Darcy. We extend this flow measurement technology by dynamically monitoring the release of helium from a helium saturated shale sample during a triaxial deformation experiment. The helium flow, initially extremely low, consistent with the low permeability of shale, is observed to increase in advance of volume strain increase during deformation of the shale. This is perhaps the result of microfracture development and flow path linkage through the microfractures within the shale. Once microfracturing coalescence initiates, there is a large increase in helium release and flow. This flow rate increase is likely the result of development of a macrofracture in the sample, a flow conduit, later confirmed by post-test observations of the deformed sample. The release rate (flow) peaks and then diminishes slightly during subsequent deformation; however the post deformation flow rate is considerably greater than that of undeformed shale.

More Details

Helium-mass-spectrometry-permeameter for the measurement of permeability of low permeability rock with application to triaxial deformation conditions

49th US Rock Mechanics / Geomechanics Symposium 2015

Bauer, Stephen J.; Lee, Moo Y.; Gardner, William P.

A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. Here we use a Helium - Mass - Spectrometry - Permeameter (HMSP) to conduct a constant pressure, steady state flow test through a sample using helium gas. Under triaxial stress conditions, the HMSP can measure flow and estimate permeability of rocks and geomaterials down to the nanodarcy scale (10-21 m2). In this study, measurements of flow through eight shale samples under hydrostatic conditions were in the range of 10-7 to 10-9 Darcy. We extend this flow measurement technology by dynamically monitoring the release of helium from a helium saturated shale sample during a triaxial deformation experiment. The helium flow, initially extremely low, consistent with the low permeability of shale, is observed to increase in advance of volume strain increase during deformation of the shale. This is perhaps the result of microfracture development and flow path linkage through the microfractures within the shale. Once microfracturing coalescence initiates, there is a large increase in helium release and flow. This flow rate increase is likely the result of development of a macrofracture in the sample, a flow conduit, later confirmed by post-test observations of the deformed sample. The release rate (flow) peaks and then diminishes slightly during subsequent deformation; however the post deformation flow rate is considerably greater than that of undeformed shale.

More Details

Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts

Sevougian, Stephen D.; Freeze, Geoffrey; Gardner, William P.; Hammond, Glenn E.; Mariner, Paul

The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories) for high-activity nuclear wastes (i.e., used nuclear fuel (UNF) and high-level radioactive waste (HLW)) that exist today or that could be generated in future fuel cycles. This report describes specific activities in FY2014 toward the development of an enhanced generic disposal system modeling and analysis capability that utilizes high performance computing (HPC) environments to simulate important multi-physics phenomena and couplings associated with the potential behavior of a geologic repository for UNF and HLW.

More Details

Theoretical foundation for measuring the groundwater age distribution

Gardner, William P.; Arnold, Bill W.

In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative to the use of hydraulic measurements alone. Anthropogenic tracers and their decay products, such as CFC11, 3H, and 3He, provide significant constraint oninput permeability values in the model. Tracer data for 39Ar provide even more complete information on the heterogeneity of permeability and variability in the flow system than the anthropogenic tracers, leading to greater parameter uncertainty reduction.

More Details
Results 1–25 of 32
Results 1–25 of 32