Publications

Results 64201–64400 of 96,771

Search results

Jump to search filters

Cascaded double ring resonator filter with integrated SOAs

Optics InfoBase Conference Papers

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles; Torres, David; Cajas, Florante; Kalivoda, James

We present a filter consisting of cascaded ring resonators with integrated SOAs. The filter demonstrates an extinction ratio >30 dB, a free spectral range of 56 GHz and a FWHM bandwidth of 3 GHz. © 2010 Optical Society of America.

More Details

Urban hopper

AUVSI Unmanned Systems North America Conference 2011

Salton, Jonathan R.; Buerger, Stephen P.; Marron, Lisa; Feddema, John; Fischer, Gary; Little, Charles; Spletzer, Barry; Xavier, Patrick; Rizzi, Alfred A.; Murphy, Michael P.; Giarratana, John; Malchano, Matthew D.; Weagle, Christian A.

Abstract not provided.

Decision making under epistemic uncertainty for a complex mechanical system

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Urbina, Angel U.; Swiler, Laura P.

This paper explores various frameworks to quantify and propagate sources of epistemic and aleatoric uncertainty within the context of decision making for assessing system performance relative to design margins of a complex mechanical system. If sufficient data is available for characterizing aleatoric-type uncertainties, probabilistic methods are commonly used for computing response distribution statistics based on input probability distribution specifications. Conversely, for epistemic uncertainties, data is generally too sparse to support objective probabilistic input descriptions, leading to either subjective probabilistic descriptions (e.g., assumed priors in Bayesian analysis) or non-probabilistic methods based on interval specifications. Among the techniques examined in this work are (1) Interval analysis, (2) Dempster-Shafer Theory of Evidence, (3) a second-order probability (SOP) analysis in which the aleatory and epistemic variables are treated separately, and a nested iteration is performed, typically sampling epistemic variables on the outer loop, then sampling over aleatory variables on the inner loop and (4) a Bayesian approach where plausible prior distributions describing the epistemic variable are created and updated using available experimental data. This paper compares the results and the information provided by different methods to enable decision making in the context of performance assessment when epistemic uncertainty is considered.

More Details

Aluminum behavior during fire heating: Focus on deformation

Fire Safety Science

Bowyer, Justin; Luketa, Anay L.; Gill, Walt; Donaldson, Burl

This paper discusses testing and modeling efforts to experimentally determine, and numerically model the behavior of aluminum at incipient melt conditions. More particularly, the role of the oxide layer which develops on the surface of aluminum which is heating in an oxidizing environment has been found to influence deformation. Several configurations where tested composed of aluminum rods at different orientations with regard to standard gravity, and video images were taken to record movement. Modeling with comparable materials shows similar behavior and encourages additional work where some numerical comparisons could be researched further. © 2011 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE.

More Details

Raman and infrared thermometry for microsystems

ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011

Phinney, Leslie M.; Lu, Wei-Yang L.; Serrano, Justin R.

This paper compares measurements made by Raman and infrared thermometry on a SOI (silicon on insulator) bent-beam thermal microactuator. Both techniques are noncontact and used to experimentally measure temperatures along the legs and on the shuttle of the thermal microactuators. Raman thermometry offers micron spatial resolution and measurement uncertainties of ±10 K; however, typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is much shorter; however, the spatial resolution is lower and calibrating the system for quantitative measurements is challenging. By obtaining thermal profiles on the same SOI thermal microactuator, the relative strengths and weaknesses of the two techniques are assessed. Copyright © 2011 by ASME.

More Details

Multilingual sentiment analysis using Latent Semantic Indexing and machine learning

Proceedings - IEEE International Conference on Data Mining, ICDM

Bader, Brett W.; Kegelmeyer, William P.; Chew, Peter A.

We present a novel approach to predicting the sentiment of documents in multiple languages, without translation. The only prerequisite is a multilingual parallel corpus wherein a training sample of the documents, in a single language only, have been tagged with their overall sentiment. Latent Semantic Indexing (LSI) converts that multilingual corpus into a multilingual "concept space". Both training and test documents can be projected into that space, allowing crosslingual semantic comparisons between the documents without the need for translation. Accordingly, the training documents with known sentiment are used to build a machine learning model which can, because of the multilingual nature of the document projections, be used to predict sentiment in the other languages. We explain and evaluate the accuracy of this approach. We also design and conduct experiments to investigate the extent to which topic and sentiment separately contribute to that classification accuracy, and thereby shed some initial light on the question of whether topic and sentiment can be sensibly teased apart. © 2011 IEEE.

More Details

COMET: A recipe for learning and using large ensembles on massive data

Proceedings - IEEE International Conference on Data Mining, ICDM

Basilico, Justin D.; Munson, M.A.; Dixon, Kevin R.; Kolda, Tamara G.; Kegelmeyer, William P.

COMET is a single-pass MapReduce algorithm for learning on large-scale data. It builds multiple random forest ensembles on distributed blocks of data and merges them into a mega-ensemble. This approach is appropriate when learning from massive-scale data that is too large to fit on a single machine. To get the best accuracy, IVoting should be used instead of bagging to generate the training subset for each decision tree in the random forest. Experiments with two large datasets (5GB and 50GB compressed) show that COMET compares favorably (in both accuracy and training time) to learning on a subsample of data using a serial algorithm. Finally, we propose a new Gaussian approach for lazy ensemble evaluation which dynamically decides how many ensemble members to evaluate per data point; this can reduce evaluation cost by 100X or more. © 2011 IEEE.

More Details

A practical approach for low-cost hermetic lid sealing

ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, InterPACK 2011

Palmer, Jeremy; Chu, Dahwey C.

Hermetic sealing of lids in ceramic microelectronic chip carriers is typically performed with eutectic solder in relatively large belt-style reflow furnaces. This process is characterized by 30 to 45-minute cycle times at temperatures above 350 C. An experimental study was undertaken with the goal of establishing a low-cost lid sealing method marked by a compact belt furnace with lower reflow temperature and lesser cycle time. This is particularly advantageous for GaAs devices which are limited to packaging process temperatures below 300 C. A series of instrumented test samples consisting of a representative die packaged in a HTCC leadless chip carrier (LCC) was prepared. Package lids were installed and sealed in a nitrogen environment with 80-20 Au-Sn lead-free solder under various cycle time and temperature conditions. Gross and fine leak testing confirmed hermeticity. Results indicate that practical sealing can be realized in the compact furnace apparatus with measurable reductions in temperature and cycle time. Seal performance is dependent upon package orientation, which suggests the process must be calibrated for unique package designs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. © 2011 by ASME.

More Details

PIC simulations of power flow in a linear transformer driver for radiographic applications

Digest of Technical Papers-IEEE International Pulsed Power Conference

Pointon, Timothy D.; Seidel, David B.; Leckbee, Joshua L.; Oliver, Bryan V.

The 7 cavity, 1 MV linear transformer driver for radiography at Sandia National Laboratories has recently been upgraded to 21 cavities with an output voltage of 2.5 MV. In this paper, results from 2-D, r-z particle-in-cell simulations of the full 21 cavity system are presented. Each cavity feed is driven with its own external RLC circuit that is independently triggered, and has a realistic 45° slanted vacuum/insulator. Electrons are emitted from the central cathode with a conventional space-charge-limited emission model. Detailed diagnostics monitor electron loss to the anode, cavity conductors, and the insulators. The most significant and encouraging result is that the simulations have absolutely no electron loss to the insulators, even with large random variations in the trigger timing. © 2011 IEEE.

More Details

A new approach to modeling discrete nonlinear constraints in continuous systems: The method of discontinuous basis functions

Proceedings of the ASME Design Engineering Technical Conference

Brake, Matthew R.; Segalman, Daniel J.

Solutions for analytical models of systems with nonlinear constraints have focused on exact methods for satisfying the constraint conditions. Exact methods often require that the constraint can be expressed in a piecewise-linear manner, and result in a series of mapping equations from one linear regime of the constraint to the next. Due to the complexity of these methods, exact methods are often limited to analyzing a small number of constraints for practical reasons. This paper proposes a new method for analyzing continuous systems with arbitrary nonlinear constraints by approximately satisfying the constraint conditions. Instead of dividing the constraints into multiple linear regimes, a discontinuous basis function is used to supplement the system's linear basis functions. As a result, precise contact times are not needed, enabling this method to be more computationally efficient than exact methods. While the discontinuous basis functions are continuous in displacement, their derivatives contain discontinuities that allow for the nonlinear forces to be accounted for with the assumption that the nonlinear constraints are able to be modeled in a discrete manner. Since each nonlinear constraint requires only one associated discontinuous basis function, this method is easily expanded to handle large numbers of constraints. In order to illustrate the application of this method, an example with a pinned-pinned beam is presented. © 2011 by ASME.

More Details

3D X-Ray ct analysis of solder joints in area array electronic package assemblies

IMAPS International Conference and Exhibition on Device Packaging - In Conjunction with the Global Business Council, GBC 2011 Spring Conference

Chanchani, Rajen C.

The inability to do visual solder joint inspection has been a major road block to using advanced ICs with high I/O count in area array packaging technologies like flip-chip, Quad Flat No Lead (QFN) and Ball grid Arrays (BGAs). In this paper, we report the results of a study to evaluate 3D X-Ray Computed Tomography (3DXRay-CT) as a solder inspection technique for area array package assemblies. We have conducted an experiment with board assemblies having intentionally designed solder defects like cold solder joints, solder-mask defects, unfilled vias in solder pads, and different shape and size solder pads. We have demonstrated that 3D X-Ray-CT technique was able to detect all these defects. This technique is a valid technique to inspect solder joints in area array packaging technologies.

More Details

Simulation of 1-minute power output from utility-scale photovoltaic generation systems

40th ASES National Solar Conference 2011, SOLAR 2011

Stein, Joshua S.; Ellis, Abraham E.; Hansen, Clifford H.; Chadliev, Vladimir

Sandia National Laboratories has developed a modeling approach to simulate time-synchronized, 1-minute power output from large PV plants in locations where only hourly irradiance measurements are available via satellite sources. The approach uses 1-min irradiance measurements from analogue sites in a similar geographic area. PV output datasets generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and singleaxis- tracked polycrystalline Si systems ranging in size from 5 to 300 MWAC. Simulated power output profiles at 1-min intervals were generated for five scenarios (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants. Copyright© (2011) by the American Solar Energy Society.

More Details

Mapping of 1D beam loads to the 3D wind blade for buckling analysis

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Berg, Jonathan C.; Paquette, Joshua P.; Resor, Brian R.

This paper discusses the development of a consistent methodology for mapping one-dimensional distributed beam loads to a three-dimensional shell structure. The resultant force distribution is a linear approximation to the actual aerodynamic pressure distribution but is sufficient to obtain accurate strain and displacement results. The purpose of the mapping technique is to apply more realistic wind loads to the shell model of a wind turbine blade without the need to set up and run expensive computational fluid dynamics or fluid structure interaction problems. Subsequent buckling and stress analysis reveal how this approach compares to other simplified methods of defining the loads. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Durability and reliability of wind turbine composite blades using robust design approach

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Abumeri, Galib; Paquette, Joshua; Abdi, Frank

The paper describes a computational simulation approach for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties. This computer-based prediction methodology combines composite mechanics with finite element analysis, damage and fracture tracking capability, probabilistic analysis and a robust design algorithm to reduce weight of turbine bales without loss in structural durability and reliability. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. Analysis D&DT results were validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence of the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. It was achieved by replacing a small volume of key materials with foam. Copyright © 2011 by Alpha STAR Corp.

More Details

Durability of tapered composite laminates under static and fatigue loading

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Abdi, Frank; Paquette, Joshua; Crans, Glenn; Minnetyan, Levon; Marzocca, Pier

A micromechanics based computational approach is put to use to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops are used in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. The use of computational simulation in the design of tapered composites structures will reduce risk of failure under service. Durability and damage tolerance (D&DT) is evaluated utilizing a Multi-scale MicroMacro Progressive failure analysis (PFA) technique. The PFA approach is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. Two different approaches have been used within the PFA to investigate these issues. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength based approach. The PFA assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). In the work presented here, constituent stiffness and strength properties for glass and carbon based material systems are reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties are also determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the test. The results presented in the paper show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. Copyright © 2011 by Alpha STAR.

More Details

An initial comparison of methods for representing and aggregating experimental uncertainties involving sparse data

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Romero, Vicente J.; Swiler, Laura P.; Urbina, Angel U.

This paper discusses the handling and treatment of uncertainties corresponding to relatively few data samples in experimental characterization of random quantities. The importance of this topic extends beyond experimental uncertainty to situations where the derived experimental information is used for model validation or calibration. With very sparse data it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The performance of a variety of uncertainty representation techniques is tested and characterized in this paper according to these two opposing objectives. An initial set of test problems and results is presented here from a larger study currently underway.

More Details

High performance descriptive semantic analysis of semantic graph databases?

CEUR Workshop Proceedings

Joslyn, Cliff; Adolf, Bob; Al-Saffar, Sinan; Feo, John; Goodman, Eric; Haglin, David; Mackey, Greg; Mizell, David

As semantic graph database technology grows to address components ranging from large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a high performance hybrid system comprising computational capability for semantic graph database processing utilizing the multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths of the Billion Triple Challenge 2010 dataset.

More Details

Some statistical procedures to refine estimates of uncertainty when sparse data are available for model validation and calibration

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Romero, Vicente J.; Rutherford, Brian M.; Newcomer, Justin T.

This paper presents some statistical concepts and techniques for refining the expression of uncertainty arising from: a) random variability (aleatory uncertainty) of a random quantity; and b) contributed epistemic uncertainty due to limited sampling of the random quantity. The treatment is tailored to handling experimental uncertainty in a context of model validation and calibration. Two particular problems are considered. One involves deconvolving random measurement error from measured random response. The other involves exploiting a relationship between two random variates of a system and an independently characterized probability density of one of the variates.

More Details

Process evaluation of DuPont™ GreenTape™ 9K7 LTCC

Proceedings - 2011 IMAPS/ACerS 7th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2011

Dai, Steve; Casias, Adrian L.

GreenTape™ 9K7 low temperature cofired ceramic (LTCC) is a low loss glass ceramic dielectric tape for high frequency applications. The low loss is mainly achieved via glass-derived and glass-reacted crystallizations that occur during the sintering stage. Tins paper reports on the impact of one critical process parameter, the ramp rate from the binder burnout to the sintering temperature (530 - 850°C), which affects the shrinkage behavior, dielectric properties and strip line (SL) resonator characteristics of 9K7. At slow ramp rates crystallization occurs before densification, increasing glass viscosity, and thus inhibiting 9k7 from reaching full density. The sintering of 9k7 can be optimized using ramp rates that allow densification prior to crystallization. © Copyright Honeywell Federal Manufacturing & Technologies LLC, 2011.

More Details

Uncertainties in prediction of wind turbine blade flutter

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Resor, Brian R.; Paquette, Joshua P.

The blades of a modern wind turbine are critical components central to capturing and transmitting most of the loads experienced by the system. Blades are complex structural items composed of many layers of fiber and resin composite material and typically, one or more shear webs. Simplification of the blade structure into equivalent beams is an important step prior to aeroelastic simulation of the turbine structure. There are a variety of approaches that can be used to reduce the three-dimensional continuum blade structure to a simpler beam representation: two-dimensional cross section analysis, extraction of equivalent properties from three-dimensional blade finite element models and variational asymptotical beam sectional analysis. This investigation provides insight into discrepancies observed in outputs from these three approaches for a real blade geometry. Wind turbine blades of the future will be longer and more flexible as weight is optimized. Innovative large blade designs may present challenges with respect to aeroelastic flutter instabilities. Sensitivity of computed flutter speed with respect to variations in computed beam properties is demonstrated at the end of this paper. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

A hybrid-hybrid solver for manycore platforms

SC'11 - Proceedings of the 2011 High Performance Computing Networking, Storage and Analysis Companion, Co-located with SC'11

Rajamanickam, Sivasankaran R.; Boman, Erik G.; Heroux, Michael A.

With the increasing levels of parallelism in a compute node, it is important to exploit multiple levels of parallelism even within a single compute node. We present ShyLU (pro- nounced\Shy-loo"for Scalable Hybrid LU), a\hybrid-hybrid" solver for general sparse linear systems that is hybrid in two ways: First, it combines direct and iterative methods. The iterative method is based on approximate Schur com- plements. Second, the solver uses two levels of parallelism via hybrid programming (MPI+threads). Our solver is use- ful both in shared-memory environments and on large par- allel computers with distributed memory (as a subdomain solver). We compare the robustness of ShyLU against other algebraic preconditioners. ShyLU scales well up to 192 cores for a given problem size. We compare at MPI performance of ShyLU against a hybrid implementation. We conclude that on present multicore nodes at MPI is better. However, for future manycore machines (48 or more cores) hybrid/ hi- erarchical algorithms and implementations are important for sustained performance. Copyright is held by the author/owner(s).

More Details

Flexible approximate counting

ACM International Conference Proceeding Series

Mitchell, Scott A.; Day, David M.

Approximate counting [18] is useful for data stream and database summarization. It can help in many settings that allow only one pass over the data, want low memory usage, and can accept some relative error. Approximate counters use fewer bits; we focus on 8-bits but our results are general. These small counters represent a sparse sequence of larger numbers. Counters are incremented probabilistically based on the spacing between the numbers they represent. Our contributions are a customized distribution of counter values and efficient strategies for deciding when to increment them. At run-time, users may independently select the spacing (accuracy) of the approximate counter for small, medium, and large values. We allow the user to select the maximum number to count up to, and our algorithm will select the exponential base of the spacing. These provide additional flexibility over both classic and Csurös's [4] floating-point approximate counting. These provide additional structure, a useful schema for users, over Kruskal and Greenberg [13]. We describe two new and efficient strategies for incrementing approximate counters: use a deterministic countdown or sample from a geometric distribution. In Csurös's all increments are powers of two, so random bits rather than full random numbers can be used. We also provide the option to use powers-of-two but retain flexibility. We show when each strategy is fastest in our implementation. © 2011 ACM.

More Details

MOF films for microsensor coatings

Materials Research Society Symposium Proceedings

Robinson, Alex L.; Allendorf, Mark D.; Stavila, Vitalie S.; Thornberg, Steven M.

Metal organic framework (MOF) materials are a class of hybrid organic-inorganic crystalline materials whose pore structures and chemical properties can be tailored by the selection of component chemical moieties. Many MOFs have extraordinary intrinsic surface areas, capable of adsorbing large quantities of other chemicals, such as volatile organic compounds or moisture. Upon absorption of guest molecules, many MOFs undergo reversible changes in the dimensions of their unit cells. These properties suggest several routes to chemical sensing in which the transduction mechanisms are: 1) the stress induced at an interface between a flexible MOF layer and a static microcantilever fabricated with a built-in piezoresistive stress sensor; 2) the change in the resonant frequency of an oscillating microcantilever induced by mass adsorption; and 3) the change in the resonant frequency of a acoustic sensor, such as a surface acoustic wave (SAW) sensor through changes in mass loading and film moduli. This paper focuses on humidity sensing by SAWs coated with Cu 3(BTC) 2 (HKUST-1) over a very broad concentration range. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. © 2011 Materials Research Society.

More Details

Integrating the life-cycle process utilizing SysML

21st Annual International Symposium of the International Council on Systems Engineering, INCOSE 2011

Artery, Georgia; De Spain, Mark J.

Sandia National Laboratories is developing and applying an Integrated Phase Gate (IPG) project structure to execute critical programs such as nuclear weapon Life Extension Projects (LEP) that require the utmost attentionto reliability, function and other stakeholder requirements including safety and security. This emphasis on project rigor reflects a new directive from the Department of Energy's National Nuclear Security Agency (NNSA) to develop robust processes in order to ensure that the nation's nuclear deterrence will be effective and available for decades to come. To this end, Sandia's Advanced and Exploratory Systems Department is developing a SysML model of an integrated Product Lifecycle Management (PLM) environment with the intent of providing project teams with direct access to program templates, requirements, tools (both program and technical) and related databases. This paper will describe the current state and future direction of the integrated PLM environment SysML model. © 2010 by Georgia Artery and Mark De Spain.

More Details

Quantification of margins and uncertainties study of deceleration environment sensors for a ribbon parachute

21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 2011

Murray, Jonathan M.; Wolfe, Walter P.

A study has been performed to quantify the uncertain performance of an environment sensing safety system which senses the unique payload trajectory environment created during parachute deployment. Models for the underlying sources of uncertainty, specifically the parachute inflation uncertainty and the uncertainty in performance of the mechanical switch sensors, have been identified and validated. DAKOTA, a Sandia-developed software package for uncertainty quantification, has been used to perform a probabalistic study of system performance, accounting for sources of uncertainty in the parachute inflation process and in the environment sensing process. This study has been performed across the payload release envelope with margins and uncertainties quantified for a critical sytem performance requirement. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

LNG cascading damage study. Volume I, fracture testing report

Kalan, Robert K.; Petti, Jason P.

As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

More Details

Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

ANIMMA 2011 - Proceedings: 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications

Reyna, D.; Bernstein, A.; Lund, J.; Kiff, S.; Cabrera-Palmer, Belkis C.; Bowden, N.S.; Dazeley, S.; Keefer, G.

Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our belowground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. © 2011 IEEE.

More Details

Automated Digital Microfluidic Sample Preparation for Next-Generation DNA Sequencing

Journal of Laboratory Automation

Kim, Hanyoup; Bartsch, Michael B.; Renzi, Ronald F.; He, Jim; Van De Vreugde, James L.; Claudnic, Mark R.; Patel, Kamlesh D.

Next-generation sequencing (NGS) technology is a promising tool for identifying and characterizing unknown pathogens, but its usefulness in time-critical biodefense and public health applications is currently limited by the lack of fast, efficient, and reliable automated DNA sample preparation methods. To address this limitation, we are developing a digital microfluidic (DMF) platform to function as a fluid distribution hub, enabling the integration of multiple subsystem modules into an automated NGS library sample preparation system. A novel capillary interface enables highly repeatable transfer of liquid between the DMF device and the external fluidic modules, allowing both continuous-flow and droplet-based sample manipulations to be performed in one integrated system. Here, we highlight the utility of the DMF hub platform and capillary interface for automating two key operations in the NGS sample preparation workflow. Using an in-line contactless conductivity detector in conjunction with the capillary interface, we demonstrate closed-loop automated fraction collection of target analytes from a continuous-flow sample stream into droplets on the DMF device. Buffer exchange and sample cleanup, the most repeated steps in NGS library preparation, are also demonstrated on the DMF platform using a magnetic bead assay and achieving an average DNA recovery efficiency of 80% ± 4.8% © 2011 Society for Laboratory Automation and Screening.

More Details

Uncertainty analysis and characterization of the sofast mirror facet characterization system

ASME 2011 5th International Conference on Energy Sustainability, ES 2011

Finch, Nolan F.; Andraka, Charles E.

Sandia Optical Fringe Analysis Slope Tool (SOFAST) is a mirror facet characterization system based on fringe reflection technology that has been applied to dish and heliostat mirror facet development at Sandia National Laboratories and development partner sites. The tool provides a detailed map of mirror facet surface normals as compared to design and fitted surfaces. In addition, the surface fitting process provides insights into systematic facet slope characterization, such as focal lengths, tilts, and twist of the facet. In this paper, a preliminary analysis of the sensitivities of the facet characterization outputs to variations of SOFAST input parameters is presented. The results of the sensitivity analysis provided the basis for a linear uncertainty analysis which is also included here. Input parameters included hardware parameters and SOFAST setup variables. Output parameters included the fitted shape parameters (focal lengths and twist) and the residuals (typically called slope error). The study utilized empirical propagation of input parameter errors through facet characterization calculations to the output parameters, based on the measurement of an Advanced Dish Development System (ADDS) structural gore point-focus facet. Thus, this study is limited to the characterization of sensitivities of the SOFAST embodiment intended for dish facet characterization. With reasonably careful setup, SOFAST is demonstrated to provide facet focal length characterization within 0.5% of actual. Facet twist is accurate within ± 0.03 mrad/m. The local slope deviation measurement is accurate within ± 0.05 mrad, while the global slope residual is accurate within ± 0.005 mrad. All uncertainties are quoted with 95% confidence. Copyright © 2011 by ASME.

More Details

Gap analysis towards a design qualification standard development for grid-connected photovoltaic inverters

Conference Record of the IEEE Photovoltaic Specialists Conference

Venkataramanan, Sai B.; Ayyanar, Raja; Maracas, George; Tamizhmani, Govindasamy; Marinella, Matthew J.; Granata, Jennifer E.

A dedicated design qualification standard for PV inverters does not exist. Development of a well-accepted design qualification standard, specifically for PV inverters will significantly improve the reliability and performance of inverters. The existing standards for PV inverters such as ANSI/UL 1741 and IEC 62109-1 primarily focus on safety of PV inverters. The IEC 62093 discusses inverter qualification but it includes all the BOS components. There are other general standards for distributed generators including the IEEE 1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this paper some of the potential requirements for a design qualification standard for PV inverters are addressed. The missing links in existing PV inverter related standards are identified and with the IEC 62093 as a guideline, the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. Some of the key missing links are related to electric stress tests. Hence, a method to adapt the existing surge withstand test standards for use in design qualification standard of PV inverter is presented. © 2011 IEEE.

More Details

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc fault modeling

Conference Record of the IEEE Photovoltaic Specialists Conference

Johnson, Jay; Schoenwald, David A.; Kuszmaul, Scott S.; Strauch, Jason; Bower, Ward I.

Article 690.11 in the 2011 National Electrical Code® (NEC®) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies. © 2011 IEEE.

More Details

Impact of time-varying loads on the programmable pulsed power driver called genesis

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; Davis, Jean-Paul D.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Hall, Clint A.; Hanshaw, Heath L.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; Lucero, D.J.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K.; Coats, Rebecca S.; Johnson, William Arthur.

The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.

More Details

Parameter uncertainty in the Sandia array performance model for flat-plate crystaline silicon modules

Conference Record of the IEEE Photovoltaic Specialists Conference

Hansen, Clifford; Stein, Joshua S.; Miller, Steven; Boyson, William; Kratochvil, Jay A.; King, David L.

The Sandia Array Performance Model (SAPM) [1] describes the power performance of photovoltaic (PV) modules under variable irradiance and temperature conditions. Model parameters are estimated by regressions involving measured module voltage and current, module and air temperature, and solar irradiance. Measurements are made under test conditions chosen to isolate subsets of parameters and which improve the quality of the regression estimates. Uncertainty in model parameters results from uncertainty in each measurement as well as from the number of measurements. Uncertainty in model parameters can be propagated through the model to determine its effect on model output. In this paper we summarize the process for estimating uncertainty in model parameters for flat-plate, crystalline silicon (cSi) modules from measurements, present example results, and illustrate the effect of parameter uncertainty on model output. Finally, we comment on how analysis of parameter uncertainty can inform model developers about the presence and impacts of model uncertainty. © 2011 IEEE.

More Details

On the preservation of total enthalpy in SUPG methods

20th AIAA Computational Fluid Dynamics Conference 2011

Bova, S.W.; Kirk, Benjamin S.

We analyze the artificial dissipation introduced by a streamline-upwind Petrov-Galerkin finite element method and consider its effect on the conservation of total enthalpy for the Euler and laminar Navier-Stokes equations. We also consider the chemically reacting case. We demonstrate that in general, total enthalpy is not conserved for the important special case of the steady-state Euler equations. A modification to the artificial dissipation is proposed and shown to significantly improve the conservation of total enthalpy.

More Details

Status of genesis a 5 MA programmable pulsed power driver

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; White, F.E.; Foster, P.J.; Lucero, D.J.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Davis, Jean-Paul D.; Hall, Clint A.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.

Genesis is a compact pulsed power platform designed by Sandia National Laboratories to generate precision shaped multi-MA current waves with a rise time of 200-500 ns. In this system, two hundred and forty, 200 kV, 80 kA modules are selectively triggered to produce 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a stripline load for dynamic materials properties research. This new capability incorporates the use of solid dielectrics to reduce system inductance and size, programmable current shaping, and gas switches that must perform over a large range of operating conditions. Research has continued on this technology base with a focus on demonstrating the integrated performance of key concepts into a Genesis-like prototype called Protogen. Protogen measures approximately 1.4 m by 1.4 m and is designed to hold twelve Genesis modules. A fixed inductance load will allow rep-rate operation for component reliability and system lifetime experiments at the extreme electric field operating conditions expected in Genesis. © 2011 IEEE.

More Details

Steady isothermal gas mass flow rate in a microscale tube from continuum to free-molecular conditions

41st AIAA Fluid Dynamics Conference and Exhibit

Gallis, Michail A.; Torczynski, J.R.

The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to simulate the steady flow of an ideal gas through a long thin isothermal microscale tube connecting two infinite reservoirs at different pressures. The tube wall is at the reservoir temperature, and molecules reflect from the walls according to the Maxwell model (i.e., a linear combination of specular reflections and diffuse reflections at the wall temperature). The computed mass flow rates approach the known expressions in the near-continuum and free-molecular regimes and agree reasonably with recent experimental measurements in microscale tubes and channels. Approximate closed-form expressions for the mass flow rate and the pressure profile along the tube are developed and are in reasonable agreement with the DSMC results in all regimes and for all values of the accommodation coefficient. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Performance assessment without pyranometers: Predicting energy output based on historical correlation

Conference Record of the IEEE Photovoltaic Specialists Conference

Golnas, Anastasios; Bryan, Joseph; Wimbrow, Robert; Hansen, Clifford; Voss, Steve

Estimating the energy that should be generated by a PV system under the prevailing conditions of irradiance and temperature is very important for system or fleet investors, energy customers, and operators. Traditionally this has been achieved by measuring irradiance and temperature in the proximity of the PV array in order to calculate the expected energy output either by using an appropriate model or by making assumptions about the system's Performance Ratio. However, this method requires the accurate installation, maintenance, and continuous monitoring of sensors thereby increasing the system's capital and maintenance costs. In this work we present an alternative methodology which can calculate the expected output of one or more systems in a regional fleet based on the measured power output from a subset of the total fleet. This can be achieved thanks to high accuracy energy measurements and the ability to correlate historical performance records. © 2011 IEEE.

More Details

Evaluation of photovoltaic system power rating methods for a Cadmium Telluride array

Conference Record of the IEEE Photovoltaic Specialists Conference

Nelson, L.; Hansen, C.

A variety of metrics are commonly used to assess whether or not a photovoltaic ("PV") system is operating as expected, but to date no standard metric has been accepted. Three commonly used metrics for assessing PV system power performance are the Power Performance Index ("PPI"), PVUSA rating as contemplated in ASTM WK22009 ("ASTM"), and Performance Energy Ratio ("PER"). This paper evaluates the suitability of each of the three metrics for use with large Cadmium Telluride (CdTe) arrays. Of particular interest is the uncertainty and stability of each result and relative differences between their magnitudes. Two different approaches for propagating measurement uncertainty to final metric uncertainty are discussed: (1) analytical and, (2) bootstrapping (similar to a Monte Carlo method). Additionally, best practices to achieve low uncertainty and high stability of a metric are addressed including choice of regression method, reference conditions and filtering range. Iteratively reweighted least squares regression methods were found to improve the stability of metrics in cloudy climates relative to ordinary least squares methods. Choosing irradiance filtering ranges that are sufficiently large and asymmetrical about the chosen reference condition was found to bias the metrics on the order of 0.6%. Final PPI uncertainty was found to be most sensitive to irradiance and power measurement errors and ranged from +/- 3% to +/- 8% for typical ranges of sensor accuracies. © 2011 IEEE.

More Details

Steady isothermal gas mass flow rate in a microscale tube from continuum to free-molecular conditions

41st AIAA Fluid Dynamics Conference and Exhibit

Gallis, Michail A.; Torczynski, J.R.

The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to simulate the steady flow of an ideal gas through a long thin isothermal microscale tube connecting two infinite reservoirs at different pressures. The tube wall is at the reservoir temperature, and molecules reflect from the walls according to the Maxwell model (i.e., a linear combination of specular reflections and diffuse reflections at the wall temperature). The computed mass flow rates approach the known expressions in the near-continuum and free-molecular regimes and agree reasonably with recent experimental measurements in microscale tubes and channels. Approximate closed-form expressions for the mass flow rate and the pressure profile along the tube are developed and are in reasonable agreement with the DSMC results in all regimes and for all values of the accommodation coefficient. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Single-mode lasing from top-down fabricated gallium nitride nanowires

IEEE Photonic Society 24th Annual Meeting, PHO 2011

Wright, J.B.; Li, Q.M.; Luk, Ting S.; Brener, Igal B.; Wang, George T.; Westlake, K.R.; Lester, L.F.

We study lasing in individual top-down fabricated GaN nanowires by optical pumping. We observe single mode emission with a side mode suppression of 15 dB, linewidths of less than 1 nm and thresholds as low as 250 kW/cm 2. © 2011 IEEE.

More Details

Transmission line and electromagnetic models of the Mykonos-2 accelerator

Digest of Technical Papers-IEEE International Pulsed Power Conference

Madrid, E.A.; Miller, C.L.; Rose, D.V.; Welch, D.R.; Clark, R.E.; Mostrom, C.B.; Stygar, William A.; Savage, Mark E.; Hinshelwood, D.D.; LeChien, K.R.

Mykonos is a linear transformer driver (LTD) pulsed power accelerator currently undergoing testing at Sandia National Laboratories. Mykonos-2, the initial configuration, includes two 1-MA, 200-kV LTD cavities driving a water-filled transmission line terminated by a resistive load. Transmission line and 3D electromagnetic (EM) simulation models of high-current LTD cavities have been developed [D.V. Rose et al. Phys. Rev. ST Accel. Beams 13, 90401 (2010)]. These models have been used to develop an equivalent two-cavity transmission line model of Mykonos-2 using the BERTHA transmission line code. The model explicitly includes 40 bricks per cavity and detailed representations of the water-filled transmission line and resistive load. (A brick consists of two capacitors and a switch connected in series.) This model is compared to 3D EM simulations of the entire accelerator including detailed representations of the individual capacitors and switches in each cavity. Good agreement is obtained between the two simulation models and both models are in good agreement with preliminary data from Mykonos-2. © 2011 IEEE.

More Details

Synthesis and characterization of supported ferrites for thermochemical CO 2 splitting using concentrated solar energy

ACS National Meeting Book of Abstracts

Ambrosini, Andrea; Coker, Eric N.; Rodriguez, Marko A.; Ohlhausen, J.A.; Miller, James E.; Stechel-Speicher, Ellen B.

The Sunshine to Petrol effort at Sandia National Laboratories aims to convert CO 2 and water to liquid hydrocarbon fuel precursors using concentrated solar energy with redox-active metal oxide systems, such as ferrites: Fe 3O 4→3FeO+ 0.5O 2 (>1350°C) 3FeO + CO 2→Fe 3O 4 + CO (<1200°C). However, the ferrite materials are not repeatedly reactive on their own and require a support, such as yttria-stabilized zirconia (YSZ). The ferrite-support interaction is not well defined, as there has been little fundamental characterization of these oxides at the high temperatures and conditions present in these cycles. We have investigated the microstructure, structure-property relationships, and the role of the support on redox behavior of the ferrite composites. In-situ capabilities to elucidate chemical reactions under operating conditions have been developed. The synthesis, structural characterization (room and high- temperature x-ray diffraction, secondary ion mass spectroscopy, scanning electron microscopy), and thermogravimetric analysis of YSZ-supported ferrites will be discussed.

More Details

Optical properties of Yb+ 3-doped fibers and fiber lasers at high temperature

Optics Communications

Moore, Sean M.; Barnett, T.; Reichardt, Thomas A.; Farrow, R.L.

Recent advances in power scaling of Yb+ 3-doped fiber lasers to the kilowatt level suggest a need to examine the performance of Yb + 3-doped silica at temperatures well above ambient. We report experimental results for the absorption coefficient, emission cross-section, fluorescence lifetime, and slope efficiency of a Yb3+-doped large mode area (LMA) silica fiber for temperatures spanning 23 °C-977 °C. To the best of our knowledge these are the highest temperatures to date for which these optical properties have been measured. We find a sharp reduction in the energy storing capability and lasing performance of Yb+ 3:SiO 2 above 500 °C that coincides with the onset of non-radiative transitions in the excited state manifold (thermal quenching). As the temperature increases from room temperature to 977 °C, absorption in the 1020-1120 nm operating band increases monotonically, concurrent with a reduction in absorption at the 920-nm and 977-nm pumping bands. Conversely, the spectral weight of the emission cross-section shifts from transitions above 1010 nm to those below, with the exception of the 977-nm emission band. © 2011 Elsevier B.V. All rights reserved. © 2011 Elsevier B.V. All rights reserved.

More Details

Microfluidic devices to elucidate human gene participation in infection of rift valley fever virus

15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011

Schudel, Benjamin R.; Negrete, Oscar N.; Harmon, Brooke N.; Pruitt, Benjamin W.; Singh, Anup K.

A microfluidic RNA interference screening device was designed to study which genes are involved in Rift Valley Fever Virus (RVFV) infection. Spots of small interfering RNA (siRNA) are manually spotted onto a glass microscope slide, and aligned to a screening device designed to accommodate cell seeding, siRNA transfection, cell culture, virus infection and imaging analysis. This portable and disposable PDMS-based microfluidic device for RNAi screening was designed for a 96-well library of transfection against variety of gene targets. Current results show transfection of GFP-22 siRNA within the device, as compared to controls, which inhibit the expression of GFP produced by recombinant RVFV. This technique can be applied to host-pathogen interactions for highly dangerous systems in BSL-3/4 laboratories, where bulky robotic equipment is not ideal.

More Details

Controlling feed electron flow in MITL-driven radiographic diodes

Digest of Technical Papers-IEEE International Pulsed Power Conference

Seidel, David B.; Pointon, Timothy D.; Oliver, Bryan V.

The electrons flowing in a coaxial magnetically insulated transmission line (MITL), if allowed to flow uncontrolled into a radiographic electron diode load, can have an adverse impact on the performance of the system. Total radiation dose, impedance lifetime, and spot quality (size, shape, position, and stability) can all be affected. Current approaches to deal with this problem require a large volume in the vicinity of the electron diode load. For applications where this volume is not available, an alternate method of controlling the feed electrons is needed. In this paper, we will investigate various ideas for dealing with this issue and present results showing the properties of the various schemes investigated. © 2011 IEEE.

More Details

Fatigue crack growth of structural metals for hydrogen service

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

San Marchi, Christopher W.; Somerday, Brian P.

As hydrogen fuel cell technologies achieve market penetration, there is a growing need to characterize a range of structural metals that are used in the hydrogen environments that are encountered in gaseous hydrogen fuel systems. A review of existing data show that hydrogen can significantly accelerate fatigue crack growth of many common structural metals; however, comprehensive characterization of the effects of hydrogen on fatigue properties is generally lacking from the literature, even for structural metals that have been used extensively in high-pressure gaseous hydrogen environments. This report provides new testing data on the effects of hydrogen on fatigue of structural metals that are commonly employed in high-pressure gaseous hydrogen. Copyright © 2011 by ASME.

More Details

Scalable stabilized fe formulations for simulating turbulent reacting flows in light water reactors

11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings

Pawlowski, Roger P.; Shadid, John N.; Smith, Tom M.; Cyr, Eric C.

This presentation will discuss progress towards developing a large-scale parallel CFD capability using stabilized finite element formulations to simulate turbulent reacting flow and heat transfer in light water nuclear reactors (LWRs). Numerical simultation plays a critical role in the design, certification, and operation of LWRs. The Consortium for Advanced Simulation of Light Water Reactors is a U. S. Department of Energy Innovation Hub that is developing a virtual reactor toolkit that will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against operating pressurized water reactors. It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and next-generation advanced architecture platforms. We will first describe the finite element discretization utilizing PSPG, SUPG, and discontinuity capturing stabilization. We will then discuss our initial turbulence modeling formulations (LES and URANS) and the scalable fully implicit, fully coupled solution methods that are used to solve the challenging systems. These include globalized Newton-Krylov methods for solving the nonlinear systems of equaitons and preconditioned Krylov techniques. The preconditioners are based on fully-coupled algebraic multigrid and approximate block factorization preconditioners. We will discuss how these methods provide a powerful integration path for multiscale coupling to the neutronics and structures applications. Initial results on scalabiltiy will be presented. Finally we will comment on our use of embedded technology and how this capbaility impacts the application of implicit methods, sensitivity analysis and UQ.

More Details

Hardness assurance testing for proton direct ionization effects

Proceedings of the European Conference on Radiation and its Effects on Components and Systems, RADECS

Schwank, James R.; Shaneyfelt, Marty R.; Ferlet-Cavrois, Véronique; Dodd, Paul E.; Blackmore, Ewart W.; Pellish, Jonathan A.; Rodbell, Kenneth P.; Heidel, David F.; Marshall, Paul W.; LaBel, Kenneth A.; Gouker, Pascale M.; Tam, Nelson; Wong, Richard; Wen, Shi J.; Reed, Robert A.; Dalton, Scott M.; Swanson, Scot E.

The potential for using the degraded beam of high-energy proton radiation sources for proton hardness assurance testing for ICs that are sensitive to proton direct ionization effects are explored. SRAMs were irradiated using high energy proton radiation sources (∼67-70 MeV). The proton energy was degraded using plastic or Al degraders. Peaks in the SEU cross section due to direct ionization were observed. To best observe proton direct ionization effects, one needs to maximize the number of protons in the energy spectrum below the proton energy SEU threshold. SRIM simulations show that there is a tradeoff between increasing the fraction of protons in the energy spectrum with low energies by decreasing the peak energy and the reduction in the total number of protons as protons are stopped in the device as the proton energy is decreased. Two possible methods for increasing the number of low energy protons is to decrease the primary proton energy to reduce the amount of energy straggle and to place the degrader close to the DUT to minimize angular dispersion. These results suggest that high-energy proton radiation sources may be useful for identifying devices sensitive to proton direct ionization. © 2011 IEEE.

More Details

Synthesis of anticorrosion and antifouling nanoparticles for marine hydrokinetic technology

ACS National Meeting Book of Abstracts

Montoya, Laura; Hernandez-Sanchez, Bernadette A.; Zarick, Cory; Altman, Susan J.; Enos, David E.

Marine Hydrokinetic energy is the production of renewable electricity converted from the kinetic energy of ocean waves, current, tides, or by thermal gradients. Currently an emerging global industry is focused on developing novel technology to harness this sustainable power. These alternative energy devices require advances in anticorrosion and antibiofouling coatings to enhance lifetime and performance. In order to understand the microbial-nanomaterial interaction as well as nanomaterial corrosion process, we have elected to examine a variety of metallic, oxide and phosphate based nanomaterials. The synthesis of these materials using solution precipitation and solovothermal routes along with their full characterization will be presented.

More Details

Dielectric surface effects on transient ARCS in lightning arrester devices

Digest of Technical Papers-IEEE International Pulsed Power Conference

Hjalmarson, Harold P.; Pineda, A.C.; Jorgenson, Roy E.; Pasik, Michael F.

Continuum calculations are used to understand the avalanche growth of electrical current in a composite insulator consisting of an air gap and a solid dielectic. The results show that trapped charge can quench the electrical breakdown. The results are compared with phenomena found in dielectric barrier discharge (DBD) devices. © 2011 IEEE.

More Details

Modeling low dose rate effects in shallow trench isolation oxides

IEEE Transactions on Nuclear Science

Esqueda, Ivan S.; Barnaby, Hugh J.; Adell, Philippe C.; Rax, Bernard G.; Hjalmarson, Harold P.; McLain, Michael L.; Pease, Ronald L.

Low dose rate experiments on field-oxide-field-effect-transistors (FOXFETs) fabricated in a 90 nm CMOS technology indicate that there is a dose rate enhancement factor (EF) associated with radiation-induced degradation. One dimensional (1-D) numerical calculations are used to investigate the key mechanisms responsible for the dose rate dependent buildup of radiation-induced defects in shallow trench isolation (STI) oxides. Calculations of damage EF indicate that oxide thickness, distribution of hole traps and hole capture cross-section affect dose rate sensitivity. The dose rate sensitivity of STI oxides is compared with the sensitivity of bipolar base oxides using model calculations. © 2011 IEEE.

More Details

Establishment of research and development priorities regarding the geologic disposal of nuclear waste in the United States and strategies for international collaboration

Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM

Nutt, Mark; Voegele, Michael; Birkholzer, Jens; Swift, Peter N.; McMahon, Kevin A.; Peters, Mark; Williams, Jeff

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technologies (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level radioactive waste (HLW). The U.S. has, in accordance with the U.S. Nuclear Waste Policy Act (as amended), focused efforts for the past twentyplus years on disposing of UNF and HLW in a geologic repository at Yucca Mountain, Nevada. The recent decision by the U.S. DOE to no longer pursue the development of that repository has necessitated investigating alternative concepts for the disposal of UNF and HLW that exists today and that could be generated under future fuel cycles. The disposal of UNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made by in the U.S and other nations, but gaps in knowledge still exist. The U.S. national laboratories have participated in these programs and have conducted R&D related to these issues to a limited extent. However, a comprehensive R&D program investigating a variety of storage, geologic media, and disposal concepts has not been a part of the U.S. waste management program since the mid 1980s because of its focus on the Yucca Mountain site. Such a comprehensive R&D program is being developed and executed in the UFDC using a systematic approach to identify potential R&D opportunities. This paper describes the process used by the UFDC to identify and prioritize R&D opportunities. The U.S. DOE has cooperated and collaborated with other countries in many different "arenas" including the Nuclear Energy Agency (NEA) within the Organisation for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited the DOE through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. Recognizing that programs in other countries have made significant advances in understanding a wide range of geologic environments, the UFDC has developed a strategy for continued, and expanded, international collaboration. This paper also describes this strategy. Copyright © 2011 by ASME.

More Details

Parametric analysis of parasitic pressure drop and heat losses for a parabolic trough with considerations of varying aperture sizes and receiver sizes

ASME 2011 5th International Conference on Energy Sustainability, ES 2011

Ho, Clifford K.; Kolb, Gregory J.

The collector aperture and diameter of the receiver of a parabolic trough were studied to investigate the relative impacts of parasitic pressure drop, heat losses, and heat flux intercepted by the receiver tube. The configuration of an LS-2 parabolic trough was used as the baseline, and the size of the HCE and collector aperture were parametrically varied using values between the baseline and twice their original size. A Matlab computer model was created to determine the flux on the receiver, heat loss from the HCE, and pressure drop within the heat transfer fluid (HTF) at each combination of aperture size and receiver diameter. Flux on the receiver is calculated for each geometry assuming a Gaussian flux distribution. Based on pressure data from SEGS VII, the standard Darcy-Weisbach equation for the pressure drop was modified to include the contribution that connective joints of varying quantities and types have on the pressure drop within the HTF. The model employs the Sandia thermal resistive network and iteratively solves for the temperatures accounting for various heat transfer modes that contribute to the heat lost by the HCE. The Matlab model expresses pressure drop and heat losses in terms of electric power. It does this by calculating both the power required to pump the HTF for varying pressure drops and the power that could have been produced if heat was not lost to the environment. The Matlab model displays the results in the form of surface plots that represent the values of heat loss, efficiency, pumping power, etc. as a function of aperture size and receiver diameter. The combined effects of pressure drop, heat loss, and heat flux intercepted by the receiver tube were evaluated, and results show that configurations with receiver diameters ranging from 85-90 millimeters and large (up to 10 meter) aperture sizes minimize the overall power consumption and maximize the efficiency of a single loop. Structural effects, wind and gravity loads, and factors associated with the balance of plant were not considered. Copyright © 2011 by ASME.

More Details

Finite element modeling and ray tracing of parabolic trough collectors for evaluation of optical intercept factors with gravity loading

ASME 2011 5th International Conference on Energy Sustainability, ES 2011

Christian, Joshua M.; Ho, Clifford K.

Predicting the structural and optical performance of concentrating solar power (CSP) collectors is critical to the design and performance of CSP systems. This paper presents a performance analysis which utilizes finite-element models and ray-tracing of a parabolic trough collector. The finite-element models were used to determine the impact of gravity loads on displacements and rotations of the facet surfaces, resulting in slope error distributions across the reflective surfaces. The geometry of the LUZ LS-2 parabolic trough collector was modeled in SolidWorks, and the effects of gravity on the reflective surfaces are analyzed using SolidWorks Simulation. The ideal mirror shape, along with the 90° and 0° positions (with gravity deformation) were evaluated for the LS-2. The ray-tracing programs APEX and ASAP are used to assess the impact of gravity deformations on optical performance. In the first part of the analysis, a comprehensive study is performed for the parabolic trough to evaluate a random slope error threshold (i.e., induced by manufacturing errors and assembly processes) above which additional slope errors caused by gravity sag decrease the intercept factor of the system. The optical performance of the deformed shape of the collector (in both positions) is analyzed with additional induced slope errors ranging from zero up to 1° (17.44 mrad). The intercept factor for different solar incident angles found from ray-tracing is then compared to empirical data to demonstrate if the simulations provide consistent answers with experimental data. Copyright © 2011 by ASME.

More Details

Experimental evaluation of the impact of packet capturing tools for web services

GLOBECOM - IEEE Global Telecommunications Conference

Chen, Chao C.; Choe, Yung R.; Chuah, Chen N.; Mohapatra, Prasant

Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this paper we perform experimental evaluations of the performance impact that packet capturing process have on webbased services; in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi- core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance. © 2011 IEEE.

More Details

Inverse diode for combination of multiple modules and fusion driver-target standoff

Digest of Technical Papers-IEEE International Pulsed Power Conference

VanDevender, J.P.; Seidel, David B.; Mikkelson, Kenneth A.; Thomas, Rayburn D.; Peyton, B.P.; Harper-Slaboszewicz, V.H.; McBride, Ryan D.; Cuneo, M.E.; Schneider, Larry X.

A newly invented, multi-megampere inverse diode converts the currents in many electron beams to current in a single Magnetically Insulated Transmission Line (MITL) for driving a common load. Electrons are injected through a transparent anode, cross a vacuum gap, and are absorbed in the cathode of the inverse diode. The cathode current returns to the anode through a load and generates electric and magnetic fields in the anode-cathode gap. Counter streaming electron flow is prevented by self-magnetic insulation in most of the inverse diode and by self-electrostatic insulation where the magnetic field is insufficient. Two-dimensional simulations with a 40 MA, 4 MeV, 40 ns electron beam at 3.5 kA/cm 2 current density, 5 degree beam divergence, and up to 60 degree injection angle show 85% of the injected electron beam current is captured and fed into the MITL. Exploratory experiments with a 2.5 MA, 2.8 MeV, 40 ns electron beam at 2 kA/cm 2at injection normal to the anode gave 70+/-10% collection efficiency in an unoptimized inverse diode. The inverse diode appears to have the potential of coupling multiple pulsed power modules into a common load at rates of change of current ∼1.6× 10 15 A/s required for a fusion energy device called the Plasma Power Station with a Quasi Spherical Direct Drive fusion target. © 2011 IEEE.

More Details

Competing channels in the propene+OH reaction: Experiment and validated modeling over a broad temperature and pressure range

Zeitschrift fur Physikalische Chemie

Kappler, Claudia; Zador, Judit Z.; Welz, Oliver W.; Fernandes, Ravi X.; Olzmann, Matthias; Taatjes, Craig A.

Although the propene+OH reaction has been in the center of interest of numerous experimental and theoretical studies, rate coefficients have never been determined experimentally between ∼600 and ∼ 750 K, where the reaction is governed by the complex interaction of addition, back-dissociation and abstraction. In this work OH time-profiles are measured in two independent laboratories over a wide temperature region (200-950 K) and are analyzed incorporating recent theoretical results. The datasets are consistent both with each other and with the calculated rate coefficients. We present a simplified set of reactions validated over a broad temperature and pressure range, that can be used in smaller combustion models for propene+OH. In addition, the experimentally observed kinetic isotope effect for the abstraction is rationalized using ab initio calculations and variational transition-state theory. We recommend the following approximate description of the OH+C 3H6 reaction: C3H6+OH⇄C 3H6OH (R1a,R-1a) C3H6+OH→C 3H5+H2O (R1b) k1a(200K ≤ T ≤ 950 K;1 bar ≤ P) = 1.45×10-11 (T/K)-0.18e 460K/Tcm3 molecule-1s-1 k -1a(200 K ≤ T ≤ 950 K; 1 bar ≤ P) = 5.74×10 12e-12690K/Ts-1 k1b(200 K ≤ T ≤ 950 K) = 1.63×10-18 (T/K)2.36e -725K/T cm3 molecule-1s-1. © by Oldenbourg Wissenschaftsverlag, München.

More Details

Strength and reliability estimation of a low temperature co-fired ceramic (LTCC) with and without metallic features

44th International Symposium on Microelectronics 2011, IMAPS 2011

Tandon, Rajan T.; Newton, Clay S.

The use of Low Temperature Co-Fired Ceramics (LTCC) is a very attractive material option for advanced packaging. For applications, a variety of features are printed in the base material: thermal and electrical vias, resistors, solder pads to name a few. Most of these features have materials that are thermally and elastically mismatched from the LTCC, producing a localized residual stress. These stresses impact the strength and reliability of the LTCC package. Here we present results and analysis for the strength and reliability assessment of an LTCC (DupontTM 951) with and without Au vias. The reliability of the ceramic material is assessed from the perspective of its susceptibility to sub-critical crack growth (SCG). Metallic vias can significantly lower the strength of the LTCC, however, their presence does not change the measured susceptibility of the material to SCG. Using our experimental data, and empirical descriptions of SCG laws, safe design life for LTCC packages under a particular stress state is estimated.

More Details

Tradeoffs in targeted fuzzing of cyber systems by defenders and attackers

ACM International Conference Proceeding Series

Mayo, Jackson M.; Armstrong, Robert C.

Automated randomized testing, known as fuzzing, is an effective and widely used technique for detecting faults and vulnerabilities in digital systems, and is a key tool for security assessment of smart-grid devices and protocols. It has been observed that the effectiveness of fuzzing can be improved by sampling test inputs in a targeted way that reflects likely fault conditions. We propose a systematic prescription for such targeting, which favors test inputs that are "simple" in an appropriate sense. The notion of Kolmogorov complexity provides a rigorous foundation for this approach. Under certain assumptions, an optimal fuzzing procedure is derived for statistically evaluating a system's security against a realistic attacker who also uses fuzzing. Copyright © 2011 Association for Computing Machinery.

More Details

Measurement comparisons between optical and mechanical edges for a silicon micromachined dimensional calibration standard

Proceedings - ASPE 2011 Annual Meeting

Tran, Hy D.; Emtman, Casey; Salsbury, James G.; Wright, William; Zwilling, Avron

A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system. A key feature is that the physical edge can be located using a touch probe CMM, and this same physical edge can also be located using a video probe. While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a typical chrome-on-glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given, and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results are presented using a meter-scale CMM with submicron measurement uncertainty; an optical CMM with submicron measurement uncertainty; a micro-CMM with submicron measurement uncertainty using three different probes; and a form contour instrument.

More Details

Structure preserving reduced-order modeling of linear periodic time-varying systems

IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD

Mei, Ting M.; Thornquist, Heidi K.; Keiter, Eric R.; Hutchinson, Scott A.

Many subsystems encountered in communication systems can be modeled as linear periodic time-varyiing (LPTV) systems. In this paper, we present a novel structure preserving reduced-order modeling algorithm for LPTV systems. A key advance of our approach is that it preserves the periodic time-varying structure during the reduction process, thus resulting in reduced LPTV systems. Unlike prior LPTV model order reduction (MOR) techniques which recast the LPTV systems to artificial linear time-invariant (LTI) systems and apply LTI MOR techniques for reduction, our structure preserving algorithm uses a time-varying projection directly on the original LPTV systems. Our approach always produces a smaller system than the original system, which was not valid for previous LPTV MOR techniques. We validate the proposed technique with several circuit examples, demonstrating significant size reductions and excellent accuracy. © 2011 IEEE.

More Details

Strength and reliability estimation of a low temperature co-fired ceramic (LTCC) with and without metallic features

44th International Symposium on Microelectronics 2011, IMAPS 2011

Tandon, Rajan T.; Newton, Clay S.

The use of Low Temperature Co-Fired Ceramics (LTCC) is a very attractive material option for advanced packaging. For applications, a variety of features are printed in the base material: thermal and electrical vias, resistors, solder pads to name a few. Most of these features have materials that are thermally and elastically mismatched from the LTCC, producing a localized residual stress. These stresses impact the strength and reliability of the LTCC package. Here we present results and analysis for the strength and reliability assessment of an LTCC (DupontTM 951) with and without Au vias. The reliability of the ceramic material is assessed from the perspective of its susceptibility to sub-critical crack growth (SCG). Metallic vias can significantly lower the strength of the LTCC, however, their presence does not change the measured susceptibility of the material to SCG. Using our experimental data, and empirical descriptions of SCG laws, safe design life for LTCC packages under a particular stress state is estimated.

More Details

Thermal conductivity manipulation in lithographically patterned single crystal silicon phononic crystal structures

IEEE International Ultrasonics Symposium, IUS

Kim, Bongsang; Nguyen, Janet; Reinke, Charles M.; Shaner, Eric A.; Harris, Charles T.; El-Kady, I.; Olsson, Roy H.

The thermal conductivity of single crystal silicon was engineered using lithographically formed phononic crystals. Specifically, sub-micron periodic through-holes were patterned in 500nm-thick silicon membranes to construct phononic crystals, and through phonon scattering enhancement, heat transfer was significantly reduced. The thermal conductivity of silicon phononic crystals was measured as low as 32.6W/mK, which is a ∼75% reduction compared to bulk silicon thermal conductivity [1]. This corresponds to a 37% reduction even after taking into account the contributions of the thin-film and volume reduction effects, while the electrical conductivity was reduced only by as much as the volume reduction effect. The demonstrated method uses conventional lithography-based technologies that are directly applicable to diverse micro/nano-scale devices, leading toward huge performance improvements where heat management is important. © 2011 IEEE.

More Details

Skel: Generative software for producing skeletal I/O applications

Proceedings - 7th IEEE International Conference on e-Science Workshops, eScienceW 2011

Logan, Jeremy; Klasky, Scott; Lofstead, Jay; Abbasi, Hasan; Ethier, Stéphane; Grout, Ray; Ku, Seung H.; Liu, Qing; Ma, Xiaosong; Parashar, Manish; Podhorszki, Norbert; Schwan, Karsten; Wolf, Matthew

Massively parallel computations consist of a mixture of computation, communication, and I/O. Of these three components, implementing an effective parallel I/O solution has often been overlooked by application scientists and has typically been added to large scale simulations only when existing serial techniques have failed. As scientists' teams scaled their codes to run on hundreds of processors, it was common to call on an I/O expert to implement a set of more scalable I/O routines. These routines were easily separated from the calculations and communication, and in many cases, an I/O kernel was derived from the application which could be used for testing I/O performance independent of the application. These I/O kernels developed a life of their own used as a broad measure for comparing different I/O techniques. Unfortunately, as years passed and computation and communication changes required changes to the I/O, the separate I/O kernel used for benchmarking remained static, no longer providing an accurate indicator of the I/O performance of the simulation, and making I/O research less relevant for the application scientists. In this paper we describe a new approach to this problem where I/O kernels are replaced with skeletal I/O applications that are automatically generated from an abstract set of simulation I/O parameters. We realize this abstraction by leveraging the ADIOS [1] middleware's XML I/O specification with additional runtime parameters. Skeletal applications offer all of the benefits of I/O kernels including allowing I/O optimizations to focus on useful I/O patterns. Moreover, since they are automatically generated, it is easy to produce an updated I/O skeleton whenever the simulation's I/O changes. In this paper we analyze the performance of automatically generated I/O skeletal applications for the S3D and GTS codes. We show that these skeletal applications achieve performance comparable to that of the production applications. We wrap up the paper with a discussion of future changes to make the skeletal application better approximate the actual I/O performed in the simulation. © 2011 IEEE.

More Details

3D IR Metamaterial Science and Technology at Sandia National Laboratories

2011 Future of Instrumentation International Workshop, FIIW 2011 - Proceedings

McCormick, Frederick B.

Sandia National Laboratories' Metamaterial Science and Technology Program has developed novel HPC-based design tools, wafer scale 3D fabrication processes, and characterization tools to enable thermal IR optical metamaterial application studies. © 2011 IEEE.

More Details

Iraq nuclear facility dismantlement and disposal program: Liquid radioactive waste tanks

Transactions of the American Nuclear Society

Dennis, Matthew L.; Cochran, John R.; Shamsaldin, Emad S.

Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program.

More Details

CMOS-compatible gate-all-around silicon nanowire detector

Proceedings of IEEE Sensors

Ziaei-Moayyed, M.; Okandan, Murat O.

In this paper, we demonstrate gate-all-around (GAA) single crystalline nanowires (SiNWs) that are fabricated using top-down standard CMOS front-end processes. The GAA silicon nanowires are fabricated in well-defined locations with high-quality electrical contacts, and controlled geometry and alignment. These SiNW FETs fabricated in this process have demonstrated repeatable electrical performance with threshold voltages of ∼0.2V and subthreshold slopes of ∼80mV/dec. The p-i-n silicon nanowires are highly sensitive to the intensity and polarization of the incident light. The results in this work demonstrate that individual SiNWs are good candidates for high resolution optical sensing and allow for tuning of the optical properties of the nanoscale devices by precise control of the nanowire geometry and orientation of the incident light. These top-down fabricated SiNWs can be easily integrated in high density arrays for enhanced light absorption, resulting in imaging sensors with nanoscale spatial resolution. © 2011 IEEE.

More Details

A plausibility-based approach to incremental inference

AAAI Fall Symposium - Technical Report

Stracuzzi, David J.

Inference techniques play a central role in many cognitive systems. They transform low-level observations of the environment into high-level, actionable knowledge which then gets used by mechanisms that drive action, problem-solving, and learning. This paper presents an initial effort at combining results from AI and psychology into a pragmatic and scalable computational reasoning system. Our approach combines a numeric notion of plausibility with first-order logic to produce an incremental inference engine that is guided by heuristics derived from the psychological literature. We illustrate core ideas with detailed examples and discuss the advantages of the approach with respect to cognitive systems.

More Details

Including shielding effects in application of the TPCA method for detection of embedded radiation sources

Shokair, Isaac R.; Johnson, William C.

Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

More Details

Extending scalability of collective IO through nessie and staging

PDSW'11 - Proceedings of the 6th Parallel Data Storage Workshop, Co-located with SC'11

Lofstead, Jay; Oldfield, Ron A.; Kordenbrock, Todd; Reiss, Charles

The increasing fidelity of scientific simulations as they scale towards exascale sizes is straining the proven IO techniques championed throughout terascale computing. Chief among the successful IO techniques is the idea of collective IO where processes coordinate and exchange data prior to writing to storage in an effort to reduce the number of small, independent IO operations. As well as collective IO works for efficiently creating a data set in the canonical order, 3-D domain decompositions prove troublesome due to the amount of data exchanged prior to writing to storage. When each process has a tiny piece of a 3-D simulation space rather than a complete 'pencil' or 'plane', 2-D or 1-D domain decompositions respectively, the communication overhead to rearrange the data can dwarf the time spent actually writing to storage [27]. Our approach seeks to transparently increase scalability and performance while maintaining both the IO routines in the application and the final data format in the storage system. Accomplishing this leverages both the Nessie [23] RPC framework and a staging area with staging services. Through these tools, we employ a variety of data processing operations prior to invoking the native API to write data to storage yielding as much as a 3X performance improvement over the native calls. © 2011 ACM.

More Details

Moore's law and the impact on trusted and radiation-hardened microelectronics

Ma, Kwok-Kee M.

In 1965 Gordon Moore wrote an article claiming that integrated circuit density would scale exponentially. His prediction has remained valid for more than four decades. Integrated circuits have changed all aspects of everyday life. They are also the 'heart and soul' of modern systems for defense, national infrastructure, and intelligence applications. The United States government needs an assured and trusted microelectronics supply for military systems. However, migration of microelectronics design and manufacturing from the United States to other countries in recent years has placed the supply of trusted microelectronics in jeopardy. Prevailing wisdom dictates that it is necessary to use microelectronics fabricated in a state-of-the-art technology for highest performance and military system superiority. Close examination of silicon microelectronics technology evolution and Moore's Law reveals that this prevailing wisdom is not necessarily true. This presents the US government the possibility of a totally new approach to acquire trusted microelectronics.

More Details

Pollution prevention opportunity assessment for MicroFab and SiFab facilities at Sandia National Laboratories

Gerard, Morgan E.

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the MicroFab and SiFab facilities at Sandia National Laboratories/New Mexico in Fiscal Year 2011. The primary purpose of this PPOA is to provide recommendations to assist organizations in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, the analyses performed, and recommended options for implementation. The Sandia National Laboratories Environmental Management System (EMS) and Pollution Prevention (P2) staff will continue to work with the organizations to implement the recommendations.

More Details

Dynamic reactor modeling with applications to SPR and ZEDNA

Suo-Anttila, Ahti J.

A dynamic reactor model has been developed for pulse-type reactor applications. The model predicts reactor power, axial and radial fuel expansion, prompt and delayed neutron population, and prompt and delayed gamma population. All model predictions are made as a function of time. The model includes the reactivity effect of fuel expansion on a dynamic timescale as a feedback mechanism for reactor power. All inputs to the model are calculated from first principles, either directly by solving systems of equations, or indirectly from Monte Carlo N-Particle Transport Code (MCNP) derived results. The model does not include any empirical parameters that can be adjusted to match experimental data. Comparisons of model predictions to actual Sandia Pulse Reactor SPR-III pulses show very good agreement for a full range of pulse magnitudes. The model is also applied to Z-pinch externally driven neutron assembly (ZEDNA) type reactor designs to model both normal and off-normal ZEDNA operations.

More Details

Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes

Crawford, Mary H.; Allerman, A.A.; Armstrong, Andrew A.; Miller, Mary A.; Smith, Michael L.; Cross, Karen C.; Lee, Stephen R.; Henry, Tania A.; Alessi, Leonard J.

We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

More Details

Interactions in 2D and 3D mid-infrared metamaterials

2011 5th Rio De La Plata Workshop on Laser Dynamics and Nonlinear Photonics, LDNP 2011

Brener, Igal B.

We explore the issue of interactions between metamaterial resonators and different types of absorbers placed in proximity to these resonators. Very clear anticrossing behaviour and level splitting is observed when IR phonons interact with planar metamaterials. More complex dipole transitions can be designed using semiconductor bandgap engineering. We show experimentally the coupling between metamaterial resonances and intersubband transitions and discuss this mechanism for electrical tuning of metamaterials throughout the optical infrared spectral region. Finally we will discuss interactions in 3D dielectric resonator metamaterials. © 2011 IEEE.

More Details

Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits

Dwyer, Stephen F.; Bosiljevac, Thomas B.; Richards, Elizabeth H.

Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

More Details

Microkinetic Modeling of Lean NOx Trap Storage and Regeneration

Larson, Richard S.

A microkinetic chemical reaction mechanism capable of describing both the storage and regeneration processes in a fully formulated lean NOx trap (LNT) is presented. The mechanism includes steps occurring on the precious metal, barium oxide (NOx storage), and cerium oxide (oxygen storage) sites of the catalyst. The complete reaction set is used in conjunction with a transient plug flow reactor code (including boundary layer mass transfer) to simulate not only a set of long storage/regeneration cycles with a CO/H2 reductant, but also a series of steady flow temperature sweep experiments that were previously analyzed with just a precious metal mechanism and a steady state code neglecting mass transfer. The results show that, while mass transfer effects are generally minor, NOx storage is not negligible during some of the temperature ramps, necessitating a re-evaluation of the precious metal kinetic parameters. The parameters for the entire mechanism are inferred by finding the best overall fit to the complete set of experiments. Rigorous thermodynamic consistency is enforced for parallel reaction pathways and with respect to known data for all of the gas phase species involved. It is found that, with a few minor exceptions, all of the basic experimental observations can be reproduced with the transient simulations. In addition to accounting for normal cycling behavior, the final mechanism should provide a starting point for the description of further LNT phenomena such as desulfation and the role of alternative reductants.

More Details

Analysis of sheltering and evacuation strategies for a national capital region nuclear detonation scenario

Brandt, Larry D.; Yoshimura, Ann S.

Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kT detonation in the National Capital Region. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at one exemplary point. For most Washington, DC neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

More Details

DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis

Adams, Brian M.; Bohnhoff, William J.; Dalbey, Keith D.; Eddy, John P.; Eldred, Michael S.; Hough, Patricia D.; Lefantzi, Sophia L.; Swiler, Laura P.; Vigil, Dena V.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

More Details

Verification of the coupled fluid/solid transfer in a CASL grid-to-rod-fretting simulation : a technical brief on the analysis of convergence behavior and demonstration of software tools for verification

Copps, Kevin D.

For a CASL grid-to-rod fretting problem, Sandia's Percept software was used in conjunction with the Sierra Mechanics suite to analyze the convergence behavior of the data transfer from a fluid simulation to a solid mechanics simulation. An analytic function, with properties relatively close to numerically computed fluid approximations, was chosen to represent the pressure solution in the fluid domain. The analytic pressure was interpolated on a sequence of grids on the fluid domain, and transferred onto a separate sequence of grids in the solid domain. The error in the resulting pressure in the solid domain was measured with respect to the analytic pressure. The error in pressure approached zero as both the fluid and solids meshes were refined. The convergence of the transfer algorithm was limited by whether the source grid resolution was the same or finer than the target grid resolution. In addition, using a feature coverage analysis, we found gaps in the solid mechanics code verification test suite directly relevant to the prototype CASL GTRF simulations.

More Details

Biomolecular interactions and responses of human epithelial and macrophage cells to engineered nanomaterials

Bachand, George B.; Brozik, Susan M.; Bachand, Marlene B.; Aaron, Jesse S.; Timlin, Jerilyn A.; Achyuthan, Komandoor A.; Kotula, Paul G.

Engineered nanomaterials (ENMs) are increasingly being used in commercial products, particularly in the biomedical, cosmetic, and clothing industries. For example, pants and shirts are routinely manufactured with silver nanoparticles to render them 'wrinkle-free.' Despite the growing applications, the associated environmental health and safety (EHS) impacts are completely unknown. The significance of this problem became pervasive within the general public when Prince Charles authored an article in 2004 warning of the potential social, ethical, health, and environmental issues connected to nanotechnology. The EHS concerns, however, continued to receive relatively little consideration from federal agencies as compared with large investments in basic nanoscience R&D. The mounting literature regarding the toxicology of ENMs (e.g., the ability of inhaled nanoparticles to cross the blood-brain barrier; Kwon et al., 2008, J. Occup. Health 50, 1) has spurred a recent realization within the NNI and other federal agencies that the EHS impacts related to nanotechnology must be addressed now. In our study we proposed to address critical aspects of this problem by developing primary correlations between nanoparticle properties and their effects on cell health and toxicity. A critical challenge embodied within this problem arises from the ability to synthesize nanoparticles with a wide array of physical properties (e.g., size, shape, composition, surface chemistry, etc.), which in turn creates an immense, multidimensional problem in assessing toxicological effects. In this work we first investigated varying sizes of quantum dots (Qdots) and their ability to cross cell membranes based on their aspect ratio utilizing hyperspectral confocal fluorescence microscopy. We then studied toxicity of epithelial cell lines that were exposed to different sized gold and silver nanoparticles using advanced imaging techniques, biochemical analyses, and optical and mass spectrometry methods. Finally we evaluated a new assay to measure transglutaminase (TG) activity; a potential marker for cell toxicity.

More Details

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC)

Schultz, Peter A.

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

More Details

Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future

Pregenzer, Arian L.

The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

More Details

Reference Model MHK Turbine Array Optimization Study within a Generic River System

Johnson, Erick J.; Barco Mugg, Janet B.; James, Scott C.; Roberts, Jesse D.

Increasing interest in marine hydrokinetic (MHK) energy has spurred to significant research on optimal placement of emerging technologies to maximize energy conversion and minimize potential effects on the environment. However, these devices will be deployed as an array in order to reduce the cost of energy and little work has been done to understand the impact these arrays will have on the flow dynamics, sediment-bed transport and benthic habitats and how best to optimize these arrays for both performance and environmental considerations. An "MHK-friendly" routine has been developed and implemented by Sandia National Laboratories (SNL) into the flow, sediment dynamics and water-quality code, SNL-EFDC. This routine has been verified and validated against three separate sets of experimental data. With SNL-EFDC, water quality and array optimization studies can be carried out to optimize an MHK array in a resource and study its effects on the environment. The present study examines the effect streamwise and spanwise spacing has on the array performance. Various hypothetical MHK array configurations are simulated within a trapezoidal river channel. Results show a non-linear increase in array-power efficiency as turbine spacing is increased in each direction, which matches the trends seen experimentally. While the sediment transport routines were not used in these simulations, the flow acceleration seen around the MHK arrays has the potential to significantly affect the sediment transport characteristics and benthic habitat of a resource. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

More Details

Reference Model 2: "Rev 0" Rotor Design

Barone, Matthew F.; Berg, Jonathan C.; Griffith, Daniel G.

The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

More Details

An economic analysis of mobile pyrolysis for northern New Mexico forests

Brown, Alexander B.; Mowry, Curtis D.; Borek, Theodore T.

In the interest of providing an economically sensible use for the copious small-diameter wood in Northern New Mexico, an economic study is performed focused on mobile pyrolysis. Mobile pyrolysis was selected for the study because transportation costs limit the viability of a dedicated pyrolysis plant, and the relative simplicity of pyrolysis compared to other technology solutions lends itself to mobile reactor design. A bench-scale pyrolysis system was used to study the wood pyrolysis process and to obtain performance data that was otherwise unavailable under conditions theorized to be optimal given the regional problem. Pyrolysis can convert wood to three main products: fixed gases, liquid pyrolysis oil and char. The fixed gases are useful as low-quality fuel, and may have sufficient chemical energy to power a mobile system, eliminating the need for an external power source. The majority of the energy content of the pyrolysis gas is associated with carbon monoxide, followed by light hydrocarbons. The liquids are well characterized in the historical literature, and have slightly lower heating values comparable to the feedstock. They consist of water and a mix of hundreds of hydrocarbons, and are acidic. They are also unstable, increasing in viscosity with time stored. Up to 60% of the biomass in bench-scale testing was converted to liquids. Lower ({approx}550 C) furnace temperatures are preferred because of the decreased propensity for deposits and the high liquid yields. A mobile pyrolysis system would be designed with low maintenance requirements, should be able to access wilderness areas, and should not require more than one or two people to operate the system. The techno-economic analysis assesses fixed and variable costs. It suggests that the economy of scale is an important factor, as higher throughput directly leads to improved system economic viability. Labor and capital equipment are the driving factors in the viability of the system. The break-even selling price for the baseline assumption is about $11/GJ, however it may be possible to reduce this value by 20-30% depending on other factors evaluated in the non-baseline scenarios. Assuming a value for the char co-product improves the analysis. Significantly lower break-even costs are possible in an international setting, as labor is the dominant production cost.

More Details

An evaluation of possible next-generation high temperature molten-salt power towers

Kolb, Gregory J.

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

More Details

Numerical study of a matrix-free trust-region SQP method for equality constrained optimization

Ridzal, Denis R.; Aguilo Valentin, Miguel A.

This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).

More Details
Results 64201–64400 of 96,771
Results 64201–64400 of 96,771