Publications

15 Results
Skip to search filters

Impact of time-varying loads on the programmable pulsed power driver called genesis

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; Davis, Jean-Paul D.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Hall, Clint A.; Hanshaw, Heath L.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; Lucero, D.J.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K.; Coats, Rebecca S.; Johnson, William Arthur.

The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.

More Details

Status of genesis a 5 MA programmable pulsed power driver

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; White, F.E.; Foster, P.J.; Lucero, D.J.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Davis, Jean-Paul D.; Hall, Clint A.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.

Genesis is a compact pulsed power platform designed by Sandia National Laboratories to generate precision shaped multi-MA current waves with a rise time of 200-500 ns. In this system, two hundred and forty, 200 kV, 80 kA modules are selectively triggered to produce 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a stripline load for dynamic materials properties research. This new capability incorporates the use of solid dielectrics to reduce system inductance and size, programmable current shaping, and gas switches that must perform over a large range of operating conditions. Research has continued on this technology base with a focus on demonstrating the integrated performance of key concepts into a Genesis-like prototype called Protogen. Protogen measures approximately 1.4 m by 1.4 m and is designed to hold twelve Genesis modules. A fixed inductance load will allow rep-rate operation for component reliability and system lifetime experiments at the extreme electric field operating conditions expected in Genesis. © 2011 IEEE.

More Details

Ferroelectric opening switches for large-scale pulsed power drivers

Reed, Kim W.; Glover, Steven F.; Pena, Gary P.; Rudys, Joseph M.

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

More Details

Progress towards a 200 MW electron beam accelerator for the RDHWT/Mariah II Program

Reed, Kim W.; Pena, Gary P.; Glover, Steven F.; Lockner, Thomas L.; Lipinski, Ronald J.; Schneider, Larry X.

The Radiatively Driven Hypersonic Wind Tunnel (RDHWT) program requires an unprecedented 2-3 MeV electron beam energy source at an average beam power of approximately 200MW. This system injects energy downstream of a conventional supersonic air nozzle to minimize plenum temperature requirements for duplicating flight conditions above Mach 8 for long run-times. Direct-current electron accelerator technology is being developed to meet the objectives of a radiatively driven Mach 12 wind tunnel with a free stream dynamic pressure q=2000 psf. Due to the nature of research and industrial applications, there has never been a requirement for a single accelerator module with an output power exceeding approximately 500 kW. Although a 200MW module is a two-order of magnitude extrapolation from demonstrated power levels, the scaling of accelerator components to this level appears feasible. Accelerator system concepts are rapidly maturing and a clear technology development path has been established. Additionally, energy addition experiments have been conducted up to 800 kW into a supersonic airflow. This paper will discuss progress in the development of electron beam accelerator technology as an energy addition source for the RDHWT program and results of electron beam energy addition experiments conducted at Sandia National Laboratories.

More Details
15 Results
15 Results