Six Generations of ViArray Rad-Hard Structured ASICs
Abstract not provided.
Abstract not provided.
Proceedings - Electronic Components and Technology Conference
This paper presents a novel 3D structured ASIC platform that lowers the development effort required to deploy 3D integration technologies in cost sensitive, low-volume applications. The key advantage of this structured 3D ASIC architecture, over custom 3D ASICs, is a fixed vertical interconnect pattern that is programmed by a single 2D metal-via mask, allowing individual die levels to be rapidly designed, fabricated, and assembled. The first silicon realization of this architecture is a 3D-stackable 12×12mm structured ASIC die with 42K interconnects, which is resource compatible with an existing 2D structured ASIC device of the same size. 3D die stacks built using this platform are also intended to be a less costly and more flexible replacement for a large 20×20mm monolithically integrated structured ASIC device. This 3D structured ASIC platform was des igned and fabricated in Sandia's 0.35-μm foundry, and high-density front-end-of-line through silicon vias (TSVs) were developed to implement the 3D vertical interconnects.1 © 2013 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Abstract not provided.
Abstract not provided.
The amounts of charge collection by single-photon absorption to that by two-photon absorption laser testing techniques have been directly compared using specially made SOI diodes. Details of this comparison are discussed.
IEEE Transactions on Nuclear Science
Abstract not provided.
IEEE Transactions on Nuclear Science
The effect of total dose on SEU hardness is investigated as a function of temperature and power supply voltage to determine worst-case hardness assurance test conditions for space environments. SRAMs from six different vendors were characterized for single-event upset (SEU) hardness at proton energies from 20 to 500 MeV and at temperatures of 25 and 80°C after total dose irradiating the SRAMs with either protons, Co-60 gamma rays, or low-energy x-rays. It is shown that total dose irradiation and the memory pattern written to the memory array during total dose irradiation and SEU characterization can substantially affect SEU hardness for some SRAMs. For one SRAM, the memory pattern made more than two orders of magnitude difference in SEU cross section at the highest total dose level examined. For all SRAMs investigated, the memory pattern that led to the largest increase in SEU cross section was the same memory pattern that led to the maximum increase in total-dose induced power supply leakage current. In addition, it is shown that increasing the temperature during SEU characterization can also increase the effect of total dose on SEU hardness. As a result, worst-case SEU hardness assurance test conditions are the maximum total dose and temperature of the system environment, and the minimum operating voltage of the SRAM. Possible screens for determining whether or not the SEU cross section of an SRAM will vary with total dose, based on the magnitude of the increase in power supply leakage current with total dose or the variation in SEU cross section with power supply voltage, have been suggested. In contrast to previous works, our results using selective area x-ray irradiations show that the source of the effect of total dose on SEU hardness is radiation-induced leakage currents in the memory cells. The increase in SEU cross section with total dose appears to be consistent with radiation-induced currents originating in the memory cells affecting the output bias levels of bias level shift circuitry used to control the voltage levels to the memory cells and/or due to the lowering of the noise margin of individual memory cells caused by radiation-induced leakage currents. © 2006 IEEE.
Abstract not provided.
Abstract not provided.
Electronic Device Failure Analysis
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.