Publications

Results 64401–64600 of 96,771

Search results

Jump to search filters

Optimization of CPAPR for x64 multicore

Allan, Benjamin A.

I report the progress to date of my work on scaling the CPAPR algorithm and necessary supporting code to enable processing large (gigabyte to 100 gigabyte) data sets and benchmarking the same. Where possible, I also report background information possibly of relevance in future modifications of the code. The results include: minor repairs and additions to the TTB library for portability, algorithmic improvements relevant to both serial and multithreaded implementations, algorithmic improvements taking advantage of multithreading hardware, support library additions (binary IO routines) needed for efficiently and reproducibly benchmarking the algorithms. For this optimization work, no large scale data sets are available. Therefore, scalability of data synthesis algorithms is addressed as well.

More Details

CASL L1 Milestone report : CASL.P4.01, sensitivity and uncertainty analysis for CIPS with VIPRE-W and BOA

Adams, Brian M.

The CASL Level 1 Milestone CASL.P4.01, successfully completed in December 2011, aimed to 'conduct, using methodologies integrated into VERA, a detailed sensitivity analysis and uncertainty quantification of a crud-relevant problem with baseline VERA capabilities (ANC/VIPRE-W/BOA).' The VUQ focus area led this effort, in partnership with AMA, and with support from VRI. DAKOTA was coupled to existing VIPRE-W thermal-hydraulics and BOA crud/boron deposit simulations representing a pressurized water reactor (PWR) that previously experienced crud-induced power shift (CIPS). This work supports understanding of CIPS by exploring the sensitivity and uncertainty in BOA outputs with respect to uncertain operating and model parameters. This report summarizes work coupling the software tools, characterizing uncertainties, and analyzing the results of iterative sensitivity and uncertainty studies. These studies focused on sensitivity and uncertainty of CIPS indicators calculated by the current version of the BOA code used in the industry. Challenges with this kind of analysis are identified to inform follow-on research goals and VERA development targeting crud-related challenge problems.

More Details

Systems resilience : a new analytical framework for nuclear nonproliferation

Pregenzer, Arian L.

This paper introduces the concept of systems resilience as a new framework for thinking about the future of nonproliferation. Resilience refers to the ability of a system to maintain its vital functions in the face of continuous and unpredictable change. The nonproliferation regime can be viewed as a complex system, and key themes from the literature on systems resilience can be applied to the nonproliferation system. Most existing nonproliferation strategies are aimed at stability rather than resilience, and the current nonproliferation system may be over-constrained by the cumulative evolution of strategies, increasing its vulnerability to collapse. The resilience of the nonproliferation system can be enhanced by diversifying nonproliferation strategies to include general international capabilities to respond to proliferation and focusing more attention on reducing the motivation to acquire nuclear weapons in the first place. Ideas for future research, include understanding unintended consequences and feedbacks among nonproliferation strategies, developing methodologies for measuring the resilience of the nonproliferation system, and accounting for interactions of the nonproliferation system with other systems on larger and smaller scales.

More Details

Temporally shaped current pulses on a two-cavity linear transformer driver system

Digest of Technical Papers-IEEE International Pulsed Power Conference

Savage, Mark E.; Mazarakis, Michael G.; LeChien, K.R.; Stoltzfus, Brian S.; Stygar, William A.; Fowler, William E.; Madrid, E.A.; Miller, C.L.; Rose, D.V.

An important application for low impedance pulsed power drivers is creating high pressures for shock compression of solids. These experiments are useful for studying material properties under kilobar to megabar pressures. The Z driver at Sandia National Laboratories has been used for such studies on a variety of materials, including heavy water, diamond, and tantalum, to name a few. In such experiments, it is important to prevent shock formation in the material samples. Shocks can form as the sound speed increases with loading; at some depth in the sample a pressure significantly higher than the surface pressure can result. The optimum pressure pulse shape to prevent such shocks depends on the test material and the sample thickness, and is generally not a simple sinusoidal-shaped current as a function of time. A system that can create a variety of pulse shapes would be desirable for testing various materials and sample thicknesses. A large number of relatively fast pulses, combined, could create the widest variety of pulse shapes. Linear transformer driver systems, whose cavities consist of many parallel capacitor-switch circuits, could have considerable agility in pulse shape. © 2011 IEEE.

More Details

Best-effort authentication for opportunistic networks

Conference Proceedings of the IEEE International Performance, Computing, and Communications Conference

Solis, John; Ginzboorg, Philip; Asokan, N.; Ott, Jörg

A "best-effort" authentication method, which is easier to attack than generic authentication methods (but requires fewer computations for benign nodes), may be sufficient for certain networking scenarios. We illustrate this point by examining the case of fragment authentication by intermediaries in an opportunistic network. We describe mechanisms for implementing best-effort authentication, with the caveat that an authentication strength sufficient in one scenario may be unfit for another. © 2011 IEEE.

More Details

Empirical battery model characterizing a utility-scale carbon-enhanced VRLA battery

IEEE Energy Conversion Congress and Exposition: Energy Conversion Innovation for a Clean Energy Future, ECCE 2011, Proceedings

Fregosi, Daniel; Bhattacharya, Subhashish; Atcitty, Stanley A.

In this paper, the electrical characteristics of a carbon enhanced valve-regulated lead-acid (VRLA) battery from East Penn Manufacturing are investigated and a dynamic model is developed for use in electrical simulations. The electrochemical processes that cause specific dynamic behaviors have been investigated. These processes are explained and a non-linear electric model, which captures the results of some of these electrochemical dynamics, is presented. The method to determine model parameters using experimental data is shown. To verify the battery model, both a pulsed current profile and an arbitrary current profile were applied to the battery and to the battery model and the voltage responses of the two were compared. © 2011 IEEE.

More Details

Branching fractions of the CN + C 3H 6 reaction using synchrotron photoionization mass spectrometry: Evidence for the 3-cyanopropene product

Journal of Physical Chemistry A

Trevitt, Adam J.; Soorkia, Satchin; Savee, John D.; Selby, Talitha S.; Osborn, David L.; Taatjes, Craig A.; Leone, Stephen R.

The gas-phase CN + propene reaction is investigated using synchrotron photoionization mass spectrometry (SPIMS) over the 9.8 - 11.5 eV photon energy range. Experiments are conducted at room temperature in 4 Torr of He buffer gas. The CN + propene addition reaction produces two distinct product mass channels, C 3H 3N and C 4H 5N, corresponding to CH 3 and H elimination, respectively. The CH 3 and H elimination channels are measured to have branching fractions of 0.59 ± 0.15 and 0.41 ± 0.10, respectively. The absolute photoionization cross sections between 9.8 and 11.5 eV are measured for the three considered H-elimination coproducts: 1-, 2-, and 3-cyanopropene. Based on fits using the experimentally measured photoionization spectra for the C 4H 5N mass channel and contrary to the previous study (Int. J. Mass. Spectrom.2009, 280, 113 - 118), where it was concluded that 3-cyanopropene was not a significant product, the new data suggests 3-cyanopropene is produced in significant quantity along with 1-cyanopropene, with isomer branching fractions from this mass channel of 0.50 ± 0.12 and 0.50 ± 0.24, respectively. However, similarities between the 1-, 2-, and 3-cyanopropene photoionization spectra make an unequivocal assignment difficult based solely on photoionization spectra. The CN + CH 2CHCD 3 reaction is studied and shows, in addition to the H-elimination product signal, a D-elimination product channel (m/z 69, consistent with CH 2CHCD 2CN), providing further evidence for the formation of the 3-cyanopropene reaction product. © 2011 American Chemical Society.

More Details

CHALLENGES IN PARALLEL GRAPH PROCESSING

Parallel Processing Letters

Hendrickson, Bruce A.; Berry, Jonathan W.

Graph algorithms are becoming increasingly important for solving many problems in scientific computing, data mining and other domains. As these problems grow in scale, parallel computing resources are required to meet their computational and memory requirements. Unfortunately, the algorithms, software, and hardware that have worked well for developing mainstream parallel scientific applications are not necessarily effective for large-scale graph problems. In this paper we present the inter-relationships between graph problems, software, and parallel hardware in the current state of the art and discuss how those issues present inherent challenges in solving large-scale graph problems. The range of these challenges suggests a research agenda for the development of scalable high-performance software for graph problems.

More Details

Thermodynamic analysis of solid-liquid phase equilibria of nitrate salts

Industrial and Engineering Chemistry Research

Davison, Scott M.; Sun, Amy C.

In this work, we analyze solid-liquid phase equilibria of molten nitrate salt mixtures. Molten salts are used as heat transfer fluids within concentrated solar power systems. Further understanding of the thermophysical properties of the salt solutions is integral to designing the newest generation of solar power systems. We make use of classical thermodynamics to quickly model the phase equilibrium of mixtures of nitrate salts. This modeling work can serve as a complement to existing experimental efforts in identifying appropriate multicomponent salt mixtures for solar power applications. We present phase calculations of ternary and quaternary mixtures of LiNO3, NaNO 3, KNO3, and CsNO3 modeled using the Wilson equation for liquid phase activity coefficients and binary solid-liquid equilibrium data. © 2011 American Chemical Society.

More Details

EDO: Improving read performance for scientific applications through elastic data organization

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Tian, Yuan; Klasky, Scott; Abbasi, Hasan; Lofstead, Jay; Grout, Ray; Podhorszki, Norbert; Liu, Qing; Wang, Yandong; Yu, Weikuan

Large scale scientific applications are often bottlenecked due to the writing of checkpoint-restart data. Much work has been focused on improving their write performance. With the mounting needs of scientific discovery from these datasets, it is also important to provide good read performance for many common access patterns, which requires effective data organization. To address this issue, we introduce Elastic Data Organization (EDO), which can transparently enable different data organization strategies for scientific applications. Through its flexible data ordering algorithms, EDO harmonizes different access patterns with the underlying file system. Two levels of data ordering are introduced in EDO. One works at the level of data groups (a.k.a process groups). It uses Hilbert Space Filling Curves (SFC) to balance the distribution of data groups across storage targets. Another governs the ordering of data elements within a data group. It divides a data group into sub chunks and strikes a good balance between the size of sub chunks and the number of seek operations. Our experimental results demonstrate that EDO is able to achieve balanced data distribution across all dimensions and improve the read performance of multidimensional datasets in scientific applications. © 2011 IEEE.

More Details

Why oil sticks to limestone

Brady, Patrick V.

A coordination chemistry analysis of oil-calcite adhesion allows waterflood chemistry controls over enhanced oil recovery from limestones to be understood. The model relies on temperature-dependent surface complexation models of calcite and oil. The primary electrostatic bridges holding oil to calcite are calculated to be [-COO-][>CaOH2+], [-COO-][>COOCa+], [>CaSO4-][-COOCa+] and [-COOCa+][>COO-] (“>” denotes calcite surface groups; “-” denotes polar oil surface groups; Mg2+ can substitute for Ca+2). The [-COO-][>CaOH2+] bridge between oil carboxylate and protonated calcite calcium sites is most sensitive to changes in waterflood chemistry. Model calculations predict that increased levels of Ca+2, Mg+2, and SO4-2, alone or in combination, will increase oil recovery from limestones by decreasing the number of [-COO-][>CaOH2+] bridges. Divalent cations decrease the local interfacial potential by decreasing the net negative charge on oil carboxylate groups; SO4-2 coordinates to protonated calcite calcium sites to decrease charge and electrostatic attraction. Increases in ionic strength should increase adhesion by increasing the net charge on each surface, though the effect will be less on calcite. The model presented here requires no fitting parameters yet accurately reproduces observed oil mobilization trends suggesting the model to be a potentially valuable tool for designing chemistries of waterfloods employed in limestones.

More Details

Enabling flexible collective communication offload with triggered operations

Proceedings - Symposium on the High Performance Interconnects, Hot Interconnects

Underwood, Keith D.; Coffman, Jerrie; Larsen, Roy; Hemmert, Karl S.; Barrett, Brian W.; Brightwell, Ronald B.; Levenhagen, Michael J.

Low latency collective communications are key to application scalability. As systems grow larger, minimizing collective communication time becomes increasingly challenging. Offload is an effective technique for accelerating collective operations; however, algorithms for collective communication constantly evolve such that flexible implementations are critical. This paper presents triggered operations-a semantic building block that allows the key components of collective communications to be offloaded while allowing the host side software to define the algorithm. Simulations are used to demonstrate the performance improvements achievable through the offload of MPI-Allreduce using these building blocks. © 2011 IEEE.

More Details

On source code transformations for steganographic applications

Proceedings - 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2011

Hulette, Geoffrey C.; Solis, John

The amount of publicly available source code on the Internet makes it attractive as a potential message carrier for steganographic applications. Unfortunately, it is often overlooked since embedding information in an undetectable way is challenging. We investigate term rewriting as a method for embedding messages into programs via transformations on source code. We elaborate on several possible transformation strategies and discuss how they might be applied in a steganographic setting. We continue with a discussion on (a) the implications and trade-offs of preserving semantic properties, (b) the relationship between messages and transformations, and (c) how to incorporate existing natural language processing techniques. The goal of this work is to elicit constructive feedback and present ideas that stimulate future work.

More Details

Transient stability and performance based on nonlinear power flow control design of renewable energy systems

Proceedings of the IEEE International Conference on Control Applications

Wilson, David G.; Robinett, R.D.

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device, such as a Unified Power Flow Controller (UPFC), to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The UPFC is required to operate as both a generator and load (energy storage) on the power system in this design. Necessary and sufficient conditions for stability of renewable generator systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate. An illustrative example demonstrates this HSSPFC methodology. It includes a 600 kW wind turbine, variable speed variable pitch configuration. The wind turbine is operated with a turbulent wind profile for below-rated wind power conditions. The wind turbine is connected in series through a UPFC to the infinite bus. Numerical simulation cases are reviewed that best demonstrate the stability and performance of HSSPFC as applied to a renewable energy system. © 2011 IEEE.

More Details

Adaptive rule-based malware detection employing learning classifier systems: A proof of concept

Proceedings - International Computer Software and Applications Conference

Blount, Jonathan J.; Tauritz, Daniel R.; Mulder, Samuel A.

Efficient and accurate malware detection is increasingly becoming a necessity for society to operate. Existing malware detection systems have excellent performance in identifying known malware for which signatures are available, but poor performance in anomaly detection for zero day exploits for which signatures have not yet been made available or targeted attacks against a specific entity. The primary goal of this paper is to provide evidence for the potential of learning classifier systems to improve the accuracy of malware detection. A proof of concept is presented for adaptive rule-based malware detection employing learning classifier systems, which combines a rule-based expert system with evolutionary algorithm based reinforcement learning, thus creating a self-training adaptive malware detection system which dynamically evolves detection rules. Experimental results are presented which demonstrate the system's ability to learn effective rules from repeated presentations of a tagged training set and show the degree of generalization achieved on an independent test set. © 2011 IEEE.

More Details

Multilayer infrared metamaterial fabrication using membrane projection lithography

Journal of Vacuum Science and Technology. B, Nanotechnology and Microelectronics

Wendt, J.R.; Brener, Igal B.; Sinclair, Michael B.

Membrane projection lithography is extended from a single layer fabrication technique to a multilayer process, adding polymeric backfill and planarization after each layer is completed. Unaligned contact lithography is used as a rapid prototyping tool to aid in process development, patterning resist membranes in seconds without requiring long e-beam write times. The fabricated multilayer structures show good resistance to solvent attack from subsequent process steps and demonstrate in-plane and out of plane multilayer metallic inclusions in a dielectric host, which is a critical step in the path to develop bulklike metamaterials at optical frequencies.

More Details

Raman thermometry of microdevices: Comparing methods to minimize error

Spectroscopy (Santa Monica)

Beechem, Thomas E.; Serrano, Justin R.

A study was conducted to demonstrate that the Raman response had the potential to be implemented in several different manners to deduce temperature. Each approach was derived from a different physical mechanism and offered particular advantages and disadvantages. It was demonstrated that temperature was deduced through the analysis of the inelastic energy transfer between the incident laser source and the quantized lattice vibrations in Raman thermometry. The peak position of the Raman signal was derived from the energy of the zone-center optical phonons that were probed during the Raman experiment. The linewidth of a Raman spectrum evolved as a result of the finite lifetime of the zone-center phonons that were being investigated. It was observed that the Raman signal originated as a consequence of the Heisenberg uncertainty principle, which stipulated that the energy of the phonon was measured only to within a certain specificity when the mode being investigated was available for only a finite amount of time.

More Details

Energy and water in the Great Lakes

Tidwell, Vincent C.

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

More Details

Energy-water analysis of the 10-year WECC transmission planning study cases

Tidwell, Vincent C.; Passell, Howard D.

In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

More Details

Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction

Romero, Vicente J.

This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

More Details

Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management

Bonano, Evaristo J.

Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.

More Details

Salinas : theory manual

Reese, Garth M.; Walsh, Timothy W.; Bhardwaj, Manoj K.

Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

More Details

Three wafer stacking for 3D integration

Ford, Christine L.; Greth, Karl D.; Hetherington, Dale L.; Sanchez, Carlos A.; Shinde, Subhash L.; Timon, Robert P.

Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

More Details

Mechanisms for charge-transfer processes at electrode/solid-electrolyte interfaces

El Gabaly Marquez, Farid E.; McDaniel, Anthony H.; Whaley, Josh A.; Chueh, William C.; McCarty, Kevin F.

This report summarizes the accomplishments of a Laboratory-Directed Research and Development (LDRD) project focused on developing and applying new x-ray spectroscopies to understand and improve electric charge transfer in electrochemical devices. Our approach studies the device materials as they function at elevated temperature and in the presence of sufficient gas to generate meaningful currents through the device. We developed hardware and methods to allow x-ray photoelectron spectroscopy to be applied under these conditions. We then showed that the approach can measure the local electric potentials of the materials, identify the chemical nature of the electrochemical intermediate reaction species and determine the chemical state of the active materials. When performed simultaneous to traditional impedance-based analysis, the approach provides an unprecedented characterization of an operating electrochemical system.

More Details

LDRD final report on confinement of cluster fusion plasmas with magnetic fields

Struve, Kenneth W.; Headley, Daniel I.; Savage, Mark E.; Stoltzfus, Brian S.; Kellogg, Jeffrey W.

Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.

More Details

Peridynamics with LAMMPS : a user guide

Parks, Michael L.; Plimpton, Steven J.; Silling, Stewart A.; Lehoucq, Richard B.

Peridynamics is a nonlocal extension of classical continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamics model. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized within LAMMPS. An example problem is also included.

More Details

An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations

Schmidt, Rodney C.; Belcourt, Kenneth N.; Hooper, Russell H.; Pawlowski, Roger P.

LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.

More Details

A study of algal biomass potential in selected Canadian regions

Roach, Jesse D.; Passell, Howard D.

A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

More Details

Assessment of public perception of radioactive waste management in Korea

Trone, Janis R.; Lee, Moo Y.

The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

More Details
Results 64401–64600 of 96,771
Results 64401–64600 of 96,771