Publications

10 Results

Search results

Jump to search filters

Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits

Dwyer, Stephen F.; Bosiljevac, Thomas B.; Richards, Elizabeth H.

Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

More Details

Assessing the Near-Term Risk of Climate Uncertainty:Interdependencies among the U.S. States

Backus, George A.; Trucano, Timothy G.; Robinson, David G.; Adams, Brian M.; Richards, Elizabeth H.; Siirola, John D.; Boslough, Mark B.; Taylor, Mark A.; Conrad, Stephen H.; Kelic, Andjelka; Roach, Jesse D.; Warren, Drake E.; Ballantine, Marissa D.; Stubblefield, W.A.; Snyder, Lillian A.; Finley, Ray E.; Horschel, Daniel S.; Ehlen, Mark E.; Klise, Geoffrey T.; Malczynski, Leonard A.; Stamber, Kevin L.; Tidwell, Vincent C.; Vargas, Vanessa N.; Zagonel, Aldo A.

Abstract not provided.

Solar photovoltaics for development applications

Richards, Elizabeth H.

This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

More Details

Photovoltaic concentrator module reliability: Failure modes and qualification

Richards, Elizabeth H.

The purpose of this paper is to discuss the current issues of interest in PV concentrator module reliability. Before describing in detail the reliability concerns about PV concentrator modules, it should be emphasized that, with proper design and attention to quality control, there is nothing to prevent concentrator modules from being as reliable as crystalline-silicon flat-plate modules have proven to be. Concentrator modules tested outdoors, as well as in the first-generation systems, have generally been reliable, and no degradation in cell output has been observed. Also, although they are not included in this paper, there are a few items currently of concern with the reliability of other PV module technologies that are not issues with PV concentrator technology, such as the stability of amorphous-silicon efficiencies and concerns about EVA encapsulation.

More Details

Performance testing and qualification of Sandia's third baseline photovoltaic concentrator module

Richards, Elizabeth H.

Sandia designed, built, and tested prototypes of a new photovoltaic concentrator module, the Sandia Baseline Module 3 (SBM3). The SBM3 is intended to be a high-efficiency module that can be readily adapted for commercial production. It consists of a 2 by 12 parquet of lenses arranged with 24 cells in an aluminum housing. The geometric concentration ratio is 185. The cells were made at the University of New South Wales and employ prismatic covers designed by ENTECH. The module features a new concept in cell assemblies in that the cells are soldered directly to a copper heat spreader, eliminating the expensive ceramic wafer and heat sink that have been used in previous designs. Electrical isolation was accomplished by anodizing the electrophoretically coating the aluminum housing. Lessons learned during construction and testing of the SBM3 are presented, along with the outdoor performance characteristics of prototype modules and results from qualification testing. 7 refs., 11 figs.

More Details

Recent progress in photovoltaic concentrator module technology

Richards, Elizabeth H.

Significant progress is continuing in the development of photovoltaic (PV) concentrator technology. New record cell and module efficiencies have been achieved, and improvements in cells, cell assemblies, and modules are increasing reliability and decreasing cost. The number of firms actively pursuing PV concentrator module technology has increased substantially in the last three years. Two new concentrator systems were installed last year, and we are likely to see more in the near future. This paper describes the most significant developments of the last two years, including descriptions of PV concentrator module development and reliability activities, advances in concentrator cell technology, the new PV concentrator array installations, a new Concentrator Initiative Program, and results of the latest costing study. 26 refs., 9 figs., 1 tab.

More Details

Photovoltaic concentrator module technology

Richards, Elizabeth H.

We are continuing to see significant progress in the development of photovoltaic (PV) concentrator technology. New record cell and module efficiencies have been achieved, and improvements in cells, cell assemblies, and modules are increasing reliability and decreasing cost. The number of firms actively pursuing PV concentrator module technology has increased substantially in the last three years. Two new concentrator systems were installed last year, and more are likely to be installed in the near future. This paper describes the most significant developments of the last two years, including descriptions of advances in PV concentrator cell technology, module development and reliability activities, the new installations, a new Concentrator Initiative Program, and results of the latest costing study. 26 refs., 8 figs., 1 tab.

More Details

Reliability of photovoltaic concentrator modules

Richards, Elizabeth H.

The cost goals and calculations in the Five-Year Plan for the National Photovoltaics Program assume that photovoltaic (PV) concentrator modules will have a reliable output and an operational life expectancy of 30 years.'' Although the modules in the few PV concentrator systems fielded to date have so far been reliable, they have not been in the field long enough to establish performance levels for 30 years and are not necessarily representative of newer concentrator designs. Thus, extensive testing and analysis are required to evaluate and establish the reliability of current concentrator module designs. Considerable research has been done to establish appropriate qualification tests, to understand component failure mechanisms, and to obtain reliable materials and designs. Surveys of fielded systems have been conducted and new test and analysis techniques have been developed in the process. This paper discusses the reliability of photovoltaic concentrator modules with an emphasis on the issues that are currently of most concern. 12 refs., 5 figs.

More Details
10 Results
10 Results