Publications

Results 1–25 of 38
Skip to search filters

Building 865 Hypersonic Wind Tunnel Power System Analysis

Schneider, Larry X.

This report documents the characterization and analysis of a high current power supply for the building 865 Hypersonic Wind Tunnel at Sandia National Laboratories. The system described in this report became operational in 2013, replacing the original 1968 system which employed an induction voltage regulator. This analysis and testing was completed to help the parent organization understand why an updated and redesigned power system was not delivering adequate power to resistive heater elements in the HWT. This analysis led to an improved understanding of the design and operation of the revised 2013 power supply system and identifies several reasons the revised system failed to achieve the performance of the original power supply installation. Design modifications to improve the performance of this system are discussed.

More Details

Plasma power station with quasi spherical direct drive capsule for fusion yield and inverse diode for driver-target coupling

Fusion Science and Technology

VanDevender, J.P.; Cuneo, M.E.; Slutz, S.A.; Herrmann, Mark H.; Vesey, Roger A.; Sinars, Daniel S.; Seidel, David B.; Schneider, Larry X.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, V.H.; Peyton, B.P.; Sefkow, Adam B.; Matzen, M.K.

The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. We report the system configuration and end-toend simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.

More Details

Plasma Power Station with Quasi Spherical Direct Drive Capsule for Fusion Yield and Inverse Diode for Driver-Target Coupling

Fusion Science and Technology

Cuneo, M.E.; Matzen, M.K.; Sinars, Daniel S.; Slutz, Stephen A.; Herrmann, Mark H.; Vesey, Roger A.; Seidel, David B.; Schneider, Larry X.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, V.H.; Sefkow, Adam B.

The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M. E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. Here, we report the system configuration and end-to-end simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z.

More Details

New self-magnetically insulated connection of multi-level accelerators to a common load

Digest of Technical Papers-IEEE International Pulsed Power Conference

VanDevender, J.P.; Langston, William L.; Pasik, Michael F.; Coats, Rebecca S.; Pointon, Timothy D.; Seidel, David B.; Jennings, C.A.; McKee, G.R.; Schneider, Larry X.

We have developed a new type of convolute called the Clam Shell MITL (CSMITL) to couple multi-level accelerators to a common load. The CSMITL has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. We report the first experimental results on a CSMITL, which convolutes two disk feeds on the Saturn accelerator into a single disk feed. Experiments with a high impedance electron beam load operating at twice the self-limited impedance of the CSMITL confirm key design features and demonstrate robust operation. © 2011 IEEE.

More Details

Impact of time-varying loads on the programmable pulsed power driver called genesis

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; Davis, Jean-Paul D.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Hall, Clint A.; Hanshaw, Heath L.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; Lucero, D.J.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K.; Coats, Rebecca S.; Johnson, William Arthur.

The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.

More Details

Inverse diode for combination of multiple modules and fusion driver-target standoff

Digest of Technical Papers-IEEE International Pulsed Power Conference

VanDevender, J.P.; Seidel, David B.; Mikkelson, Kenneth A.; Thomas, Rayburn D.; Peyton, B.P.; Harper-Slaboszewicz, V.H.; McBride, Ryan D.; Cuneo, M.E.; Schneider, Larry X.

A newly invented, multi-megampere inverse diode converts the currents in many electron beams to current in a single Magnetically Insulated Transmission Line (MITL) for driving a common load. Electrons are injected through a transparent anode, cross a vacuum gap, and are absorbed in the cathode of the inverse diode. The cathode current returns to the anode through a load and generates electric and magnetic fields in the anode-cathode gap. Counter streaming electron flow is prevented by self-magnetic insulation in most of the inverse diode and by self-electrostatic insulation where the magnetic field is insufficient. Two-dimensional simulations with a 40 MA, 4 MeV, 40 ns electron beam at 3.5 kA/cm 2 current density, 5 degree beam divergence, and up to 60 degree injection angle show 85% of the injected electron beam current is captured and fed into the MITL. Exploratory experiments with a 2.5 MA, 2.8 MeV, 40 ns electron beam at 2 kA/cm 2at injection normal to the anode gave 70+/-10% collection efficiency in an unoptimized inverse diode. The inverse diode appears to have the potential of coupling multiple pulsed power modules into a common load at rates of change of current ∼1.6× 10 15 A/s required for a fusion energy device called the Plasma Power Station with a Quasi Spherical Direct Drive fusion target. © 2011 IEEE.

More Details

Status of genesis a 5 MA programmable pulsed power driver

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; White, F.E.; Foster, P.J.; Lucero, D.J.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Davis, Jean-Paul D.; Hall, Clint A.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.

Genesis is a compact pulsed power platform designed by Sandia National Laboratories to generate precision shaped multi-MA current waves with a rise time of 200-500 ns. In this system, two hundred and forty, 200 kV, 80 kA modules are selectively triggered to produce 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a stripline load for dynamic materials properties research. This new capability incorporates the use of solid dielectrics to reduce system inductance and size, programmable current shaping, and gas switches that must perform over a large range of operating conditions. Research has continued on this technology base with a focus on demonstrating the integrated performance of key concepts into a Genesis-like prototype called Protogen. Protogen measures approximately 1.4 m by 1.4 m and is designed to hold twelve Genesis modules. A fixed inductance load will allow rep-rate operation for component reliability and system lifetime experiments at the extreme electric field operating conditions expected in Genesis. © 2011 IEEE.

More Details
Results 1–25 of 38
Results 1–25 of 38