An Integrated Microfluidic System Enabling Real-Time Autonomous Field Surveillance for Vector-Borne Pathogens
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
PLoS ONE
Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillarybound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.
Lab on a Chip
Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4-95°C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. This simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.
Emerging infectious diseases present a profound threat to global health, economic development, and political stability, and therefore represent a significant national security concern for the United States. The increased prevalence of international travel and globalized trade further amplify the threat of infectious disease outbreaks of catastrophic effect. The key to containing and eradicating an outbreak before it goes global is rapid identification of index cases and initial clusters of affected individuals. This depends upon establishment of a biosurveillance network that effectively reaches infectious disease hotspots in even the most remote regions of the world and provides a network-integrated, location-appropriate diagnostic capability. At present, there are two critical needs which must be addressed in order to extend biosurveillance activities beyond centralized laboratory facilities: 1) A simple, reliable, and safe method for immediate stabilization of clinical specimens in the field; and 2) A flexible sample processing platform that enables in-field preparation of clinical specimens for rapid, on-site analysis using a variety of diagnostic assay platforms. These needs are not necessarily mutually exclusive; in fact, we propose that they are most efficiently addressed by a deployable sample processing platform that immediately stabilizes the information content of clinical specimens through transformation of the inherently unstable analytes of interest into stable equivalents that are appropriately formatted for downstream analysis. In order to address this problem, we have developed a sample processing pipeline and microfluidics-based platform modules enabling: 1) Extraction of total RNA from finger-stick quantities of human whole blood; and 2) Microscale synthesis of appropriately-formatted cDNA products that capture the information content of blood RNA in a stable form that supports pathogen detection and/or characterization via PCR and/or Second Generation Sequencing (SGS). Through this research we have discovered new, effective solutions for problems that thus far have hindered use of digital microfluidics (DMF) in biomedical applications. Our work reveals a clear path forward to fieldable, automated sample processing systems that will enable rapid, on-site identification of usual-suspect and novel pathogens in clinical specimens for improved biosurveillance.
The document is a progress report on a first generation rapid testing microfluidic device with integrated sidewall mirrors being conducted by the Sandia National Laboratories team.
Abstract not provided.
PLoS ONE
Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories. © 2013 Kim et al.
Abstract not provided.
Abstract not provided.
Abstract not provided.